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a  b  s  t  r  a  c  t

A  stress  gradient  continuum  theory  is  presented  that  fundamentally  differs  from  the well-established
strain  gradient  model.  It is  based  on the  assumption  that the  deviatoric  part of  the  gradient  of  the  Cauchy
stress  tensor  can  contribute  to the  free  energy  density  of solid  materials.  It requires  the introduction  of
so-called  micro-displacement  degrees  of  freedom  in addition  to  the usual  displacement  components.  An
isotropic  linear  elasticity  theory  is worked  out  for two-dimensional  stress  gradient  media.  The  analytical
solution  of  a simple  boundary  value  problem  illustrates  the  essential  differences  between  stress  and
strain  gradient  models.
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1. Introduction

Much attention has been dedicated to strain gradient effects in
continuum mechanics and materials sciences in the last fifty years,
since the pioneering work of Toupin (1962) and Mindlin (1965).
The second gradient theory represents an extension of the classical
Cauchy continuum by incorporating the effect of the second gra-
dient of the displacement field into the balance and constitutive
equations of the medium, in addition to the usual first gradient
of the displacement. It must be noted that the second gradient of
the displacement theory and the strain gradient model represent
the same continuum, due to compatibility conditions, as shown
by Mindlin and Eshel (1968).  Higher order stresses, called hyper-
stresses or double stresses, must be included in the theory as the
quantities conjugate to the components of the second gradient
of displacement. This results in an extended balance of momen-
tum equation and additional boundary conditions. These equations
have been derived first by Toupin and Mindlin using variations of
the elastic energy, and then by Germain (1973a) by means of the
method of virtual power. A derivation à la Cauchy,  i.e. based on
the representation of generalized contact forces, was established
more recently by Noll and Virga (1990) and Dell’Isola and Seppecher
(1995, 1997),  due to the fact that the Neumann conditions are rather
intricate in a second gradient medium.
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In contrast, the role of stress gradients has been the subject
of little attention, if one excepts its introduction in fatigue crack
initiation models at notches and holes of various sizes as studied
in the engineering community (Bascoul and Maso, 1981; Lahellec
et al., 2005). More recently, a stress-gradient based criterion has
been proposed for dislocation nucleation in crystals at a nano-scale
(Acharya and Miller, 2004).

Regarding continuum mechanics, there is a long-standing
misconception or, at least, ambiguity going through the whole lit-
erature on generalized continua, that implicitly considers that the
strain gradient theory can also be regarded as a stress gradient
model. The stress gradient can be found in Aifantis gradient elastic-
ity model (Aifantis, 1992, 2009; Ru and Aifantis, 1993; Lazar et al.,
2006) in the form:

�
∼

= �
∼

− c∇2�
∼

(1)

where �
∼

is an effective stress tensor whose divergence vanishes in

the absence of body forces and c is a material parameter associated
with a characteristic length. In a Cartesian orthonormal coordinate
system the Laplace operator is applied to each component of the
matrix. The Laplace term arises as the divergence of the gradient
of the stress field. However, it can be shown that the presence of
the stress gradient in this model is the result of a specific constitu-
tive assumption made in Mindlin’s strain gradient elasticity (Forest
and Aifantis, 2010). Accordingly, Aifantis gradient elasticity must be
considered as a strain gradient model.

As a result, the question arises whether it is possible
to formulate a stress gradient continuum theory describing
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size-dependent material properties and how much it may  dif-
fer from the well-established strain gradient model. Generalized
continuum theories include strain gradient, micromorphic and
non-local models (Eringen, 1999, 2002) that introduce higher order
strain gradients, additional degrees of freedom or non-local ker-
nels, but not explicitly the stress gradient as a primary variable. To
the knowledge of the authors, a stress gradient continuum theory
does not exist in the literature. The objective of the present work
is to establish the framework of such a stress gradient theory and
to illustrate the predicted behavior in the case of linear isotropic
elasticity. In particular we will prove that this theory fundamen-
tally differs from Mindlin’s strain gradient model: stress gradient
and strain gradient models are two distinct representations of the
continuum.

The presented stress gradient theory for the 3D continuum is
similar to the so-called bending-gradient theory recently proposed
by Lebée and Sab (2011a,b) for out-of-plane loaded elastic thick
laminated plates. In this plate theory, the stress energy density is
a function of the local bending moment and its gradient. More-
over, these authors show that the well-known Reissner plate theory
(Reissner, 1945) for out-of-plane loaded elastic thick homogeneous
plates actually is a degenerated case of their bending-gradient the-
ory. In the bending-gradient theory the stress energy density is a
function of the local bending moment and of the spherical part of
its gradient which coincides with the classical shear forces, see also
(Cecchi and Sab, 2007; Nguyen et al., 2007, 2008).

A systematic comparison of the new model will be drawn with
Mindlin’s second gradient theory and Germain’s general micro-
morphic theory (Germain, 1973b). The pros and the cons of each
model will be addressed at different stages of the discussion. In
particular, both computational and physical, or more precisely
micro-mechanical, arguments will be raised to characterize the
new approach.

For the sake of brevity, the theory is developed within the small
deformation framework and under static conditions. A first con-
struction of the theory is proposed in Section 2 for elastic stress
gradient solids. The general theory, independent of the constitu-
tive behavior, is presented based on the method of virtual power
in Section 3. A two-dimensional linear isotropic elasticity theory is
formulated in Section 4. Finally, the responses of the stress gradi-
ent and strain gradient continua are compared in Section 5 in the
case of a generic boundary value problem involving periodic body
forces.

Tensors of zeroth, first, second, third and fourth ranks are
respectively denoted by a, a, a

∼
, a

∼
(or a

∼
) and a

≈
. The intrinsic nota-

tion is usually complemented by the index notation to avoid any
confusion. The tensor product is denoted by ⊗. We  also define the
symmetrized tensor product using the following notations:

a
s⊗b = 1

2
(a ⊗ b + b ⊗ a), a(ibj) = 1

2
(aibj + ajbi) (2)

The nabla operator is denoted by ∇ and operates as follows on
a vector field, in a Cartesian orthonormal basis (e1, e2, e3):

u(x) ⊗ ∇ = ∂ui

∂xj

ei ⊗ ej = ui,jei ⊗ ej (3)

The Cauchy stress tensor is denoted by �
∼

and has the following

components:

�
∼

= �ijei ⊗ ej (4)

The stress gradient tensor is defined as

�
∼

⊗ ∇ = �ij,kei ⊗ ej ⊗ ek (5)

Its divergence is the vector

�
∼

· ∇ = �ij,jei (6)

2. Formulation of a stress gradient elasticity model

2.1. Algebra of deviatoric third rank tensors

The stress gradient tensor is the third rank tensor defined by
Eq. (5).  Its components are symmetric with respect to the two  first
indices. In this work, the space of third rank tensors that are sym-
metric with respect to the first two indices is denoted by R.  It is
a vector space of dimension 18 which is endowed with the scalar
product:

R
∼

∴ R
∼

= RijkRijk, ∀R
∼

∈ R (7)

Each tensor R
∼

∈ R can then be decomposed into a spherical part

R
∼

s ∈ S ⊂ R and a deviatoric part R
∼

d ∈ D  ⊂ R:

R
∼

= R
∼

s + R
∼

d (8)

with

Rs
ijk = 1

4
(Rilmılmıjk + Rjlmılmıik) (9)

Here, the space D  is the subset of R containing the deviatoric
elements R

∼
such that

R
∼

: 1
∼

= 0, Rijkıjk = 0 (10)

where 1
∼

is the second rank identity tensor and ıij is the Kronecker

symbol. It follows that S = D⊥ and R = D  ⊕ S.
We finally note that the spherical part of the stress gradient is

directly related to the divergence of the stress tensor by

(�
∼

⊗ ∇)s
ijk = 1

4
(�im,mıjk + �jm,mıik) (11)

or equivalently,

(�
∼

⊗ ∇) : 1
∼

= (�
∼

⊗ ∇)s : 1
∼

= �
∼

· ∇ (12)

The previous definitions are valid in the physical three-
dimensional space. However, we  will also need expressions in the
two-dimensional case. In the purely two-dimensional case, the for-
mula (9) must be replaced by

Rs
ijk = 1

3
(Rilmılmıjk + Rjlmılmıik)

where the indices i, j, k only take the values 1, 2. In the two-
dimensional case, the matrix form of the decomposition (8)
becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R111

R122

R221

R222

R211

R112

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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111
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Rs
222

Rs
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Rs
112

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rd
111

Rd
122

Rd
221
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222

Rd
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Rd
112

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)
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