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The formation of isolated circular islands submitted to misfit strain has been theoretically investigated on the
surface of a thin wetting layer of constant thickness deposited on a substrate by calculating the chemical po-
tential of the island atoms. It is found that the island size selected by the misfit strain depends on the differ-
ence between the shear moduli of the islands (and wetting layer) and the substrate. An analytical expression
for the island radius is derived from the first order development in the shear modulus difference.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The heteroepitaxial growth of thin films on substrates has been in-
tensively studied from both experimental and theoretical points of
view for many years, since it has been proved to be a promising
way to produce self-assembled and self-organized nano-structures
(see [1–5] and the references therein). In particular, the effect of
strain on the island size distribution has been widely investigated in
the framework of surface physics and continuum mechanics [6–9].
During the Volmer–Weber (V–W) growth mode, the islands directly
grow on the surface of the substrates while the islands develop on a
wetting layer during the Stranski–Krastanov (S–K) growth mode.
For V–Wgrowth, it has been demonstrated that the elastic interaction
between two-dimensional (2D) strained islands influences the island
size distribution during the coarsening processes with and without is-
land motion [10]. Likewise, for three-dimensional (3D) islands, it has
been found that, due to island edges, a stable shape is selected against
coarsening for the islands, leading to self-assembled patterns of
uniform sized structures [11]. When the island–island interaction is
strong, the effect of film coverage on the island size has been also
characterized by the same author for strained and non-strained
islands. For an isolated island, the stress induced by the lattice
mismatch at the film-substrate interface for heteroepitaxy as well as
the stress due to the substrate surface anisotropy for homoepitaxy
have been found to be responsible for a transition from square to
elongated shape as the size of the islands increases [12–14].

When a wetting layer is present, a phase diagram has been theo-
retically constructed which predicts the different growth modes, the
density and size of dislocation-free islands as a function of the film

thickness and misfit strain [15]. The elastic interaction between misfit
nanostructures has been also investigated through finite element cal-
culations and the sign of this interaction has been found to be depen-
dent on the island sizes [16]. The effect of the neighbor islands on the
wetting in S–K growth has been numerically investigated, the wetting
decreasing with increasing island density [17]. The influence of strain
on the surface energies in the island formation for Ge/Si(100) system
has been characterized combining first-principles and continuum cal-
culations [18]. The effect of strain on the Ge/Si growth mode has been
investigated in stacked layers and the influence of the decrease of
the Ge critical thickness in the upper layers has been characterized
on the increase of the island size and height [19]. Likewise, the effect
of anisotropic strain, surface energy and surface diffusivity has been
theoretically studied on the self-organization of island patterns on
surfaces [20].

In this work, the size selection of islands growing on the surface of
a strained wetting layer has been theoretically investigated from a
chemical potential calculation in the regime where the dislocation-
free islands grow separately onto the surface of the film whose thick-
ness is assumed to be constant. The effect of shear modulus difference
between the film and the substrate is characterized.

2. Modeling

A 2D circular island of radius R and height his is considered on the
surface of a thin layer of thickness hf submitted to misfit strain due to
a coherent interface between the film and a semi-infinite substrate
(see Fig. 1a). The Young's modulus and Poisson's ratio are labeled Gf

and vf for the island and the film and Gs and νs for the substrate, respec-
tively. The island growth is studied assuming that the film thickness is
constant, i.e. the film does not grow vertically and the islands are too
far apart to interact. The film and island are assumed to be free of
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dislocations and the intrinsic surface strain is not considered. In the fol-
lowing, taking νs = νf = ν, one focuses in the framework of linear and
isotropic elasticity, on the shear modulus effect on the island shape se-
lection due to misfit strain. In this hypothesis, it is assumed that the is-
land growth is governed by the chemical potential of the island atoms
defined as [10,11]:

μc ¼
s

2πR
dFtot

dR
; ð1Þ

where s is the area occupied by one atom and F tot the total energy as-
sociated with the island:

F tot ¼ F su þF el; ð2Þ

withFsu the surface energy andFel the elastic relaxation energy. For the
2D circular island on the film free-surface, assuming the surface ener-
gies of the film and the island are identical [21], the surface energy
term yields:

Fsu ¼ 2πRγ; ð3Þ

withγ the edge energy per unit length. The elastic relaxation energy has
been determined using Boussinesq's force formalism [22–24,12]. In-
deed, for 2D strained structures, it has been demonstrated that when
the strain does not vary along the (Oz) perpendicular direction to the
film surface, the elastic effect can be modeled using distributions of
force monopoles along the island perimeter. In the case of an isolated
circular island, the following procedure has been used [25]. It is as-
sumed that the elasticity problem can be solved considering two distri-
butions of force monopoles f− = − δ(r − R + a0)f0er and f+ =
δ(r − R − a0)f0er, with δ the Dirac delta function, er the unit radial vec-
tor and a0 a cut-off length of the order of the lattice parameter (see
Fig. 1b). The force intensity per unit length f0:

f 0 ¼ 2Gf
1þ ν
1−ν

δa
as

his; ð4Þ

depends on the misfit strain δa/a, the island height his and the thin film
elastic constantsGf and ν, with δa the latticemismatch between thefilm
and the substrate and as the lattice parameter of the substrate. In this
hypothesis, the elastic energy variation is given by Fel ¼ −1

2ε
in
el where

εelin is the elastic energy interaction between both distributions f− and
f+. The elastic energy relaxation due to the island thus writes:

εel ¼ −1
2
εinel ¼

1
2
∫Sf−uþ;f dS

¼ −πf 0 R−r0ð Þuþ;f
r R−r0;0ð Þ;

ð5Þ

where u+,f is the elastic displacement on the surface of the film due to
the f+ distribution and S the film surface. This 2D axi-symmetrical
problem of elasticity has been solved in the cylindrical coordinate
system (r,θ,z) for a given circular distribution of force monopoles
f± = ± δ(r − R±)f0er, introducing a bi-harmonic function ϕ±

i which
satisfies [26–28],

ΔΔϕi
� r; zð Þ ¼ 0; ð6Þ

with Δ the Laplacian operator, R± = R ± a0 and i = f for the film and
i = s for the substrate. Eq. (6) has been solved using the method of
integral transform [26–28]. Taking the Hankel transform of zero order
for ϕ±

i :

Gi
� ζ ; zð Þ ¼ ∫þ∞

0 rϕi
� r; zð ÞJ0 ζrð Þdr; ð7Þ

it yields:

Gi
� ζ ; zð Þ ¼ Ai

� þ Bi
�z

� �
eþζz þ Ci

� þ Di
�z

� �
e−zζ

; ð8Þ

with Jn the Bessel function of the first kind of nth order. The elastic dis-
placement u±,i and stress tensor σ �;i can be derived from the ϕ±

i func-
tion using the linear elasticity theory. The different coefficients A±i , B±i ,
C±
i and D±

i have been determined writing the following boundary con-
ditions for the epitaxially strained thin film on its semi-infinite sub-
strate: zero normal pressure on the film free-surface, mechanical
equilibrium and non-gliding condition at the film/substrate interface:

σ �;f r;0ð Þ⋅nf ¼ f�; ð9Þ

σ �;f r;−hf
� �

⋅ns ¼ σ �;s r;−hf
� �

⋅ns; ð10Þ

u�;f r;−hf
� �

¼ u�;s r;−hf
� �

; ð11Þ

with nf and ns the unit normal vector of the film free-surface and film/
substrate interface, respectively (see Fig. 1b). Assuming thatϕ±

s takes fi-
nite values when z → − ∞, one sets C±,s = D±,s = 0. The system of
Eqs. (9)–(11) has been solved, the expressions of the other non-zero
constants being not displayed in this paper, and the elastic energy
term has been found to be:

εel ¼ π 1−νð Þ f
2
0

Gf
R2−a20
� �

� ∫þ∞
0

χ1

χ2
e−2khf J1 k R−a0ð Þð ÞJ1 k Rþ a0ð Þð Þdk;

ð12Þ

(a)

(b)

Fig. 1. (a) A 2D circular island of radius R and thickness his lying onto the surface of a
thin film of thickness hf deposited on a substrate of thickness hs > > hf. (b) Top view
of the island: to model the elastic relaxation, two distributions of force monopoles f+
and f− are introduced onto the surface of the film at R+ = R + a0 and R− = R − a0,
respectively.
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