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methods, is dispelled.

Anovel superposition method based on the symplectic geometry approach is presented for exact bending
analysis of rectangular cantilever thin plates. The basic equations for rectangular thin plate are first
transferred into Hamilton canonical equations. By the symplectic geometry method, the analytic solutions
to some problems for plates with slidingly supported edges are derived. Then the exact bending solutions
of rectangular cantilever thin plates are obtained using the method of superposition. The symplectic
superposition method developed in this paper is completely rational compared with the conventional
analytical ones because the predetermination of deflection functions, which is indispensable in existing
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1. Introduction

The bending of rectangular thin plates with various combi-
nations of boundary conditions has been investigated for many
years by different authors. It is well known that explicit analytic
solutions of rectangular thin plates are available only for those
with two opposite sides simply supported (i.e. Navier’s solution,
Levy’s solution, etc.) while it is, so far, difficult to get the solu-
tions which exactly satisfy both the partial differential equation and
other boundary conditions of a plate. Accordingly, various methods
have been studied. One of the most commonly used methods for
exact bending solutions of rectangular thin plates is the superposi-
tion method (Timoshenko and Woinowsky-Krieger, 1959; Huang
and Conway, 1952; Chang, 1980, 1981, 1984). The technique of
Fourier series expansion is another procedure for accurate bend-
ing analysis of plates (Khalili et al., 2005). Besides, a number
of numerical methods have been frequently adopted in analyz-
ing plate bending problems such as the finite difference method
(Holl, 1937; Barton, 1948; MacNeal, 1951; Nash, 1952), finite ele-
ment method (Zienkiewicz and Cheung, 1964), finite strip method
(Cheung, 1976), method of discrete singular convolution (Civalek,
2007), method of differential quadrature (Civalek, 2004).

Cantilever thin plate is an important structural element while
its bending has been one of the most difficult problems in the
theory of elastic thin plate for the complexity in both the gov-
erning equation and the boundary conditions. Consequently, some
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approximate methods were utilized for the problem. The method
of finite difference was firstly used to solve a cantilever plate with
concentrated edge load by Holl (1937). The problem is also solved
by Barton (1948), MacNeal (1951), Livesley and Birchall (1956) sep-
arately with the same method. Some other approximate analysis
of the bending of a rectangular cantilever plate by uniform normal
pressure was presented by Nash (1952). The generalized variational
principle was applied to rectangular thin plates by Shu and Shih
(1957), and the principle was then used by Plass et al. (1962) for
deflection and vibration problems of cantilever plates. Leissa and
Niedenfuhr (1962) obtained the solution for uniformly loaded can-
tilevered square plates using the technique of point matching and
the Rayleigh-Ritz method. In addition, Chang (1980, 1981, 1984)
derived series solutions for the bending of both uniformly loaded
and concentrated loaded rectangular cantilever plates by using the
method of superposition, which involved a skillful superposition of
several problems, yet used smart trial functions.

In the present paper, a novel superposition method based on the
symplectic geometry approach (Zhong and Williams, 1993; Yao and
Zhong, 2002; Zhong and Li, 2009; Liu and Li, 2010) is developed
to obtain exact bending solutions of rectangular cantilever thin
plates under arbitrary loading. Unlike the traditional semi-inverse
approaches in classical plate analysis employed by Timoshenko and
Woinowsky-Krieger (1959) and others such as Chang (1980, 1981,
1984), where a trial deflection function has to be predetermined,
the analysis here is completely rational without any trial func-
tions. The procedure of solution presented enables one to acquire
exact solutions for more problems of plates which have to hith-
erto be analyzed using the semi-inverse method or approximate
approaches. It can be not only applied to other combinations of
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boundary conditions but also further extended to the problems of
moderately thick plates as well as buckling, vibration, etc.

2. Hamilton dual equation for rectangular thin plates

The coordinate system of a rectangular cantilever thin plate
under consideration is illustrated in Fig. 1a, where 0 <x<a and
0 <y <b. The governing equations of the plate are
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The internal forces of the plate are represented as

0= DT, o DU ) 2
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where W is the transverse deflection of plate midplane, D is the
flexural rigidity, q is the distributed transverse load, Mx, My, Myy,
Qx, Qy, Vx and Vj, are the bending moments, torsional moment, shear
forces and total shear forces, respectively.

From Egs. (6a,b) and (3), we have
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Eq. (4b) yields
30 —Vo2W My
Jy o2 D
Eq. (4c¢) is rewritten as
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From Egs. (4b,c), (5a), (6a) and (7), we find
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From Egs. (6b), (2) and (10), we obtain
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Putting V, =T, Egs. (8), (9),(11) and (12) are represented in the
matrix form as
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where

(W, 6,T, My]T, f=10,0,q, O]T, the over dot denotes differentia-

0 L.
L 0 } is
the symplectic matrix in which I is 2 x 2 unit matrix, thus H is a
Hamiltonian operator matrix and Eq. (13) is the Hamiltonian dual
equation for the plate.

tion with respect to y. Observing HT =JH]J, where J =

3. Symplectic analytic solution of a plate with one edge
slidingly supported and the opposite edge simply supported

The homogeneous equation of Eq. (13) is

Z-HZ (14)

According to the symplectic approach, applying the method of
separation of variables to Z yields

Z=XX)Y(y) (15)

where X(x) = [W(x), (x), T(x), My(x)]T. Substituting Eq. (15) into Eq.
(14), we find

dYy
T WY XG0 = X (16ab)
where u is the eigenvalue and X(x) is the corresponding eigenvec-
tor.

By expanding Eq. (16b) the eigen solution can be obtained via

the ordinary differential equation

d4W (x) L d2W (x)
dx? +2u X2

The solution of Eq. (17) is

+utWx) =0 (17)

W(x) = A cos ux + B sin ux + Cx cos ux + Fx sin ux (18)

For a plate slidingly supported at x=0 and simply supported at
x=a, the boundary conditions are
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Substituting Eq. (18) into Eq. (19) then equating the determi-

nant of the coefficient matrix to zero, we have the transcendental

equation of eigenvalues

cos®(ua)=0 (20)
with the double roots

nmw —nmw
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The corresponding basic eigenvector of (,, obtained from Eq.
(16b), is

X3(x) = [1, st D3(v — 1), Dp2(v - 1)]' cos(ptnx) (22)

Knowing that the eigenvalue w, is a double root, there exists
the first-order Jordan form eigen solution X,11, which is solved by
HX! = X} + X% while imposing the boundary conditions (19), as

T
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In a similar manner, the corresponding basic and first-order Jor-
dan form eigenvectors for the eigenvalue —u, are

X2, (%) = [1, =ptn, ~Dpd(v — 1), Dpd(v — 1]’ cos(pinx) (24)
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