Contents lists available at SciVerse ScienceDirect

Thin Solid Films

journal homepage: www.elsevier.com/locate/tsf

Growth, dielectric properties, and memory device applications of ZrO₂ thin films

Debashis Panda, Tseung-Yuen Tseng*

Department of Electronics Engineering and Institute of Electronics, National Chiao Tung University, Hsinchu 30010, Taiwan

ARTICLE INFO

Available online 16 January 2013

Keywords: Zirconium oxide High-k Dielectric constant MOS capacitor Flash memory Unipolar RRAM Bipolar RRAM

ABSTRACT

In the advancement of complementary metal-oxide-semiconductor device technology, SiO₂ was used as an outstanding dielectric and has dominated the microelectronics industry for the last few decades. However, with the recent size downscaling, ultrathin SiO_2 is no longer suitable. ZrO_2 has been introduced as a high-k dielectric to replace SiO₂. This paper reviews recent progress of ZrO₂ thin films as dielectric layers for volatile dynamic random access memory (DRAM) applications and as a gate dielectric for CMOS devices. Materials and electrical properties of ZrO₂ films obtained by different deposition methods are compared. The effects of different top and bottom electrodes, and different doping elements, on ZrO₂ dielectric properties are described. Applications discussed include the use of ZrO₂ in Ge and SiGe nanocrystal-embedded nonvolatile flash memory devices. ZrO₂ films as charge trapping layers in SOZOS (poly-Si/SiO₂/ZrO₂/SiO₂/Si) and TAZOS (TaN/Al₂O₃/ZrO₂/SiO₂/Si) based nonvolatile flash memory stacks, and bipolar, unipolar, and nonpolar ZrO₂-based resistive switching memory devices are also briefly discussed. The impact of electrode materials, metal nanocrystals, metal implantation, metal doping, metal layers, and oxide ion conductor buffer layer on resistive switching properties and switching parameters of emerging ZrO₂-based resistive switching memory devices for high speed, low power, nanoscale, nonvolatile memory devices are briefly reviewed. A roadmap of the applications of ZrO₂ thin film in future low power, nanoscale microelectronic device applications is realized from this review.

© 2013 Elsevier B.V. All rights reserved.

Contents

1.	Introduction		2
2.	ZrO_2 thin film deposition \ldots		3
	2.1 Sputter denosition		3
	2. Chamical upper deposition		1
		• • •	4
		• • •	4
	2.4. Evaporation		5
	2.5. Chemical solution deposition		5
3.	Important properties of ZrO_2		5
4.	Application of ZrO_2 as a dielectric layer		5
	4.1. Dielectric properties of ZrO_2 film on $Si(001)$		5
	4.2. ZrO ₂ -based MIS structures on strained Si and SiGeC		8
	4.3. ZrO ₂ -based MIS structure on III–V semiconductors		8
	4.4. MIM capacitor based on ZrO_2		8
	4.5. Stacked ZrO ₂ -Al ₂ O ₃ -based MIM capacitors		9
	4.6. Carrier mobility of ZrO ₂ gate dielectrics		10
	4.7. Impact of doping on dielectric properties		10
5.	Application in nonvolatile flash memory		10
6.	ZrO_2 based resistive switching memory		11
	6.1. Effect of electrode material		12
	6.2. Effect of metal nanocrystals and implantations		13
	6.3. Switching effect of ZrO ₂ using buffer layer		17
7.	Conclusions		17

Critical review

^{*} Corresponding author. *E-mail address:* tseng@cc.nctu.edu.tw (T.-Y. Tseng).

^{0040-6090/\$ -} see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tsf.2013.01.004

Acknowledgment	18
References	18

1. Introduction

The rapid progress of complementary metal-oxide-semiconductor (CMOS) integrated circuit (IC) technology, since the late 1980s, has enabled the silicon-based microelectronics industry to concurrently meet several technological requirements to fuel market expansion. These requirements include high performance (speed), high reliability, high package density, increased low voltage and low power applications, and multilevel capability (MLC) [1]. The incredible characteristic of transistors that drives the rapid growth of the semiconductor industry is that their speed increases and their cost decreases as their size is reduced. To meet these requirements for future CMOS technology nodes, device scaling has acted as the driving force. CMOS transistor scaling has been the primary factor driving improvements in microprocessor performance. Recently, however interest in nonvolatile memory technology research is increasing rapidly due to a vast number of applications in portable electronic devices which play an important part in our daily life [2,3]. Memory devices are classified into two broad categories based on CMOS technology: volatile and nonvolatile. Fig. 1 is a flow chart classifying semiconductor memory devices [2].

Downsizing of MOSFETs (metal-oxide semiconductor field effect transistors) places stringent demands on the properties of the gate oxide. SiO₂ has dominated the silicon microelectronics industry as the most practical choice for an FET (field effect transistor) gate dielectric material since 1957. SiO₂ offers several crucial advantages such as being highly compatible with silicon technology, a uniform and conformal oxide, high interface quality etc. Industry's acquired information regarding SiO₂ properties and processing techniques over the past several decades makes change difficult. However, further scaling of the FET is eventually going to be impeded by the inability to reduce the oxide thickness below 1.3 nm. For thin SiO₂,

the leakage currents from electron tunneling through the dielectrics are a problem.

Amorphous HfO₂ and ZrO₂ with dielectric constants (k) ~20, have been considered for several years as SiO₂ replacement candidates essentially due to their good physical and electrical properties and the fact that they can survive transistor processing [4,5]. For future technology nodes, aggressive scaling to less than 1 nm equivalent oxide thickness (EOT) will require new gate oxides with k values of more than 30 [4]. High-k oxides (k > 50) are also required for next generation dynamic random access memories (DRAM), where extremely low EOT (0.5 nm) is essential. Indeed, HfO₂ dielectrics are already in production for 45-nm CMOS technology by major IC manufacturers. Some leading companies are also using ZrO₂ as a dielectric material for CMOS applications. One of the most promising candidates for SiO₂ replacement, which is thermodynamically stable with respect to solid state reaction with silicon, is ZrO_2 [6–8]. In addition, it has a large band gap (~5.8 eV) and high dielectric constant (20) [9–14]. As a thin film, ZrO₂ normally condenses on a substrate in crystalline form, but amorphous ZrO₂ thin films are preferred for microelectronic device applications. Grain boundaries in crystalline ZrO₂ thin films can cause undesired increase in leakage current characteristics. Different anisotropic crystalline phases, such as monoclinic, tetragonal, and cubic [12–14], can lead to non-uniformities in k value as a function of film thickness.

A high *k* value is the first requirement in selecting a material for gate oxide applications. It must be higher than the *k* (3.9) value of SiO₂, preferably in the range 10–30 [12–30]. Several binary oxides such as Ta_2O_5 , Y_2O_3 , Al_2O_3 , HfO_2 , ZrO_2 , and TiO_2 [12–30] and also perovskite materials such as SrTiO₃ and (Ba,Sr)TiO₃ [21–23], have been investigated as oxide dielectric materials for CMOS devices. If the *k* value of the material is too high, such as for TiO₂ (*k*~80), fringing

Fig. 1. Classifications of semiconductor memory [2]. SRAM: Static random access memory, DRAM: Dynamic random access memory, PCM: Phase change memory, MRAM: Magnetic random access memory, FeRAM: Ferroelectric random access memory, and RRAM: Resistive random access memory.

Download English Version:

https://daneshyari.com/en/article/8037062

Download Persian Version:

https://daneshyari.com/article/8037062

Daneshyari.com