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This paper presents analytical solutions for the stresses in circular thin films bonded to a substrate with a
thin compliant interlayer. The axisymmetric results are shown to be an excellent approximation for square
tiles (islands), provided one defines an effective diameter equal to the average of the square's diagonal and
width. An analytical result is also presented for the energy release rate associated with convergent circular
delamination cracks (from the outer edges of the tile inwards). These solutions are used to generate regime
maps that indicate active failure mechanisms (tile yielding, interlayer yielding and delamination) as a func-
tion of constituent properties and tile size. These regime maps clearly indicate acceptable tile sizes and/or
the required material properties to avoid all modes of failure.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A wide variety of technologies involve the use of tile-like structures
(often referred to as “islands”) bonded to substrates, as shown schemat-
ically in Fig. 1. Examples include sensor arrays, displays, microelectronic
packaging and thermal protection systems (e.g. [1–10,12–14]). Inter-
layers are commonly present between the tiles and the substrate to pro-
mote adhesion and/or to provide thermal or electrical insulation. The
relationship between stresses arising from thermal expansion mismatch
and tile size plays a critical role in design, as it ultimately governs the sus-
ceptibility of the system to failure by yielding, cracking or interfacial
debonding (e.g. [11,13,12,14,15]).

As is well-known from shear lag theory [16], the in-plane direct
stress in a tile due to a misfit strain increases from the outer edge to-
wards the center, a consequence of the shear transfer between the tile
and the underlying structure (e.g. [16–25]). (Note that many of these
and other references address the problem of multiple cracking in
blanket films, which leads to thin strips of finite dimension; the
crack spacing dictates the tile or island size.) The peak stress at the
tile center depends on the tile size relative to a characteristic shear
transfer length, and asymptotically approaches the blanket-film result
in the limit of large tile sizes. Even for applications where finite-sized
features are not a prerequisite (e.g. a thermal protection system that

has no inherent constraint on planar dimension), the stresses in large
tiles may be too high to avoid failure. In such scenarios, the use of
finite-sized tiles can be an effective way to reduce stresses and improve
reliability (e.g. [11,13,12,14,15]).

Hence, a central design variable for such systems is the tile size. A
maximum allowable size might be prescribed in order to avoid failure,
given a pre-determined set of thermomechanical properties for the
constituents. Alternatively, if the tile size is fixed by other consider-
ations (e.g. sensor area), onemight pose the question in terms of an ac-
ceptable range of properties (such as adhesion or coefficient of thermal
expansion (CTE) mismatch). In such design exercises, closed-form rela-
tionships between geometry, properties and stress are highly advanta-
geous, in that they eliminate the need for cumbersome numerical
studies of the parameter space. This is particularly true for applications
in which material selection is part of the design process (as opposed to
being fixed a priori), since there are likely many possible combinations
of materials and tile sizes that are acceptable.

Here, we present closed-form solutions for deformations and stress-
es in a thin circular tile mounted on a thick substrate via a compliant
interlayer. The solutions are shown to be accurate approximations for
square tiles, subject to a suitable definition for the effective tile diame-
ter. In turn, the stress solutions are used to estimate the steady-state
energy release rates for interlayer debonding. The steady-state energy
release rate corresponds to the maximum possible driving force,
obtained when the crack length is much greater than the tile thickness
(e.g. [26,27] and references therein). Previous calculations have demon-
strated that the energy release rate grows quickly as a function of crack
length, reaching steady state for lengths (measured from the outer edge
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of the tile) on the order of several tile thicknesses [25–27]. The resulting
solutions for stresses and energy release rates are then used to construct
regime maps that facilitate design of tiling systems. The maps depict
various failure modes (yielding, cracking or interface debonding) in
terms of system geometry (characterized by layer thicknesses and tile
size) and material properties (e.g. stiffness, yield strength, thermal ex-
pansion and toughness).

Though this analysis is inspired by and resembles a variety of
previous shear-lag analyses of stress and debonding in finite-sized
features [16–25,28–31], a critical distinguishing feature of the pres-
ent work is the treatment of the in-plane tile stresses acting parallel
to the free edges. Here, these stresses are non-zero and dictated by
the tile size. Previous treatments that assume plane-strain deforma-
tion (i.e. a semi-infinite strip) or purely biaxial deformation lead to
inappropriate predictions of direct stress in the direction parallel to
the free edge. That is, if one assumes purely biaxial stress and im-
poses the condition that the in-plane stresses are zero at the free
edge, then the stress parallel to the free edge is assumed to be zero,
which is not the case. Similarly, if one assumes plane-strain deforma-
tion of a semi-infinite strip, then the stress parallel to the free edge is
not a function of tile size, which is not the case. The present model
properly imposes the condition that the stress along the edges is
zero in the direction normal to the surface, and dictated by the tile
size in the direction parallel to the edge. Further, the model enables
failure maps that indicate transitions in failure mechanism as a func-
tion of tile size and key dimensionless parameters identified here. As
with all shear-lag analyses, the model assumes that displacements
occur only in the plane of the tile, such that through-thickness effects
are negligible. In order for this to be valid, the aspect ratio of the tiles
(planar dimension divided by the total thickness) must be large. It is
further assumed that the tiling system is attached to a substrate that
is much thicker than the top layers, such that bending in the multi-
layer is negligible.

2. Model and results

The constituents are assumed to be linearly elastic with the proper-
ties: E-Young's modulus, v-Poisson's ratio and h-thickness. The substrate
is assumed to be semi-infinite, such that bending deformation is negligi-
ble. This implies that the stress in the tile scales with the misfit strain
given by θs–θf, where θs,f are the eigenstrains in the substrate and film
(top tile). (For example, for thermal misfit, θ=αΔT, where α−CTE, and
ΔT=T−To is the temperature change relative to the stress-free reference
temperature To). Subscripts refer to a specific layer: f-film (or tile),
s-substrate, and i-interlayer. The analysis assumes that the majority of
deformation in the tile is axisymmetric, with only radial displacements
being non-zero. It is demonstrated that this is an accurate approximation
for square tiles, with minor deviations near the tile corners that are not
likely to impact design choices.

2.1. Shear lag analysis and displacement solution

The model assumes only radial displacements, u(r), such that
the kinematic and constitutive relationships for the film are given
by:
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Equilibrium in the film dictates the following:
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In the present approximation, the shear stress in the thin
interlayer, σrz

i , is assumed to be uniform through its thickness, and
governed by the difference of the displacements at the top and bot-
tom of the interlayer:

σ i
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Ei
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u rð Þ−θsr
hi

� �
; ð4Þ

where u(r) is the displacement of the top of the interlayer, which is
equal to the film displacement. The quantity θsr reflects the uniform
outward expansion of the bottom of the interlayer due to the
substrate's expansion. In this regard, the effect of mechanical
stretching of the substrate can be easily accounted for by including
the imposed strain in the definition of θs, as in θs=αsΔTs+ �a,
where �a is the strain applied to the substrate. The shear stress in
the film at the interface acts opposite to that in the interlayer (as de-
fined above); further, the shear stress is zero at the top of the film.
Assuming that the film is thin, the gradient of shear stress in the
film is well-approximated by:

∂σ f
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rz
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The governing equation for radial displacements is obtained by
combining Eqs. (1)–(5). Using the normalizations u=a⋅ū and
r ¼ a⋅�r , where a is the tile radius, one obtains the following governing
equation:

�u″þ�u′

�r ′
−

�u
�r2
−λ2 �u−θs⋅�rð Þ ¼ 0 ð6Þ

Fig. 1. Schematic of the tiling system. The problem is analyzed as axisymmetric, with the tile (island) diameter denoted as a. It is shown via comparison with finite element analysis
(FEA) of square tiles that the axisymmetric model is accurate provided the effective radius is taken a ¼ 1=4ð Þ wþ

ffiffiffi
2

p
w

� �
, where w is the width of the square tile.
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