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Ptychography, a form of Coherent Diffractive Imaging, is used with short wavelengths (e.g. X-rays, elec-
tron beams) to achieve high-resolution image reconstructions. One of the limiting factors for the recon-
struction quality is the accurate knowledge of the illumination probe positions. Recently, many advances
have been made to relax the requirement for the probe positions accuracy. Here, we analyse and demon-
strate a straightforward approach that can be used to correct the probe positions with sub-pixel accuracy.

Simulations and experimental results with visible light are presented in this work.

© 2018 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Coherent Diffractive Imaging (CDI) is a lensless imaging tech-
nique which uses far-field diffraction intensity patterns to recon-
struct the image of an object. Ptychography is a form of CDI, where
multiple far-field diffraction patterns corresponding to overlapping
illuminated regions of the object are collected, and the object is
reconstructed [1]. For the reconstruction of the object, the Ptycho-
graphical Iterative Engine (PIE) [2] is used of which many differ-
ent variants have been developed [3-6]. PIE has been found to be
robust if the a priori information such as the illumination probe
function and the lateral probe positions are accurately known [7].
Several methods exist which can overcome the requirement for the
accuracy of the a priori information. For example, Extended PIE
(ePIE) can reconstruct the object as well as a poorly defined probe
function [3]. However, ePIE has been found to be sensitive to the
probe positioning errors, especially in applications involving short
wavelengths such as X-rays and electron beams [8]. For these short
wavelengths, the required accuracy in the probe positions should
be in some cases of the order of 50 pm [9]. Since this is difficult
to achieve experimentally, some new developments in the probe
position corrections have been made.

The non-linear (NL) optimization approach was the first method
that has been used to correct the probe positions [10]. However,
this approach can easily lead to local minima which can be far
from the required global minimum since several parameters (up-
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date of the object, the probe function and the probe positions)
are used in the NL optimization routine. Improvements have been
made in the NL optimization approach by combining it with ePIE
and difference map (DM) [11]. In this reference, the authors have
used the ePIE and DM to update the object and the probe function,
whereas the probe positions have been corrected using the NL op-
timization. One drawback of this method is that the probe posi-
tions can not be corrected to sub-pixel accuracy. Other methods
based on the genetic algorithm and a drift-based model were also
explored [12,13]. In yet another study, the “annealing approach”
“based on trial and error” was used, but at the cost of being com-
putationally expensive [14]. Finally, there is a successful method
that uses the cross-correlation between two consecutive object es-
timates for each probe position [9]. This approach has corrected
the probe positions to sub-pixel accuracy using the additional sub-
pixel registration method [15].

Here, we analyse and demonstrate an alternative algorithm to
correct the probe positions with sub-pixel accuracy that is quite
straightforward to implement [16]. This paper is organized as fol-
lows: In Section 2 we describe our method for the probe position
correction. In Section 3, the robustness of the method will be ver-
ified by evaluating the simulation results. In Section 4, we show
the experimental results. Finally, in Section 5, we present the con-
clusions.

2. The algorithm

In ptychography, the diffraction intensities F(u) for different
probe positions j = 1,2,...J with respect to the object are recorded
in the camera. Here, J is the number of diffraction patterns. If the
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object and illumination probe functions are represented as O(r)
and P(r), then

P(u) = |#{0(mPr -R)} W), (1)

where R/ = (XJ,YJ) is the probe position vector, r and u repre-
sent the coordinate vector in the real and reciprocal space respec-
tively, and .# denotes the Fourier transform. We combine the well-
known phase reconstruction method ePIE with our position correc-
tion method. That means, for the kth iteration and the jth probe
position, we update the object Oy(r) to Oy, (r) and the probe func-
tion Py(r) to P, (r) using the ePIE after which the probe position
Rf; is updated using our probe position correction method. We de-
scribe the probe position correction method below. Note that in
this probe position correction method, we use the previous esti-
mates Oy(r) and Py(r) instead of Oy (r) and P, ¢ (r) as this saves
one extra Fourier transform to perform. The reason will be clear
Soon.

For the kth iteration, the diffracted far-field for the probe posi-
tion R} can be written as

Wi (u) = Z{O ()R (r —RD}, (2)
and the estimated intensity is
1) = |/ (3)

For the object estimate Oy(r) and probe estimate P (r), the inaccu-
racy in the measurement intensity due to the error (AX/, AYkJ) in
the probe position is given by:
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Here, 37’3 and P ’3 are the derivatives of the estimated intensity
k

with respect to the probe position along the x and y directions.
We solve Eq. (4) for AX] and AY] where Al is assigned to I/ —I;.

To calculate —I and , we have
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We approximate the right hand side of the Eq. (6) as
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where 1, and 1, are the vectors along the x and y directions and
the magnitudes are the lengths of a pixel along the x and y direc-
tions, respectively.

The following steps are performed to calculate the error and
update the probe positions.

1. Calculate the difference AIJ between the measured intensity F
and the estimated intensity I] given by AI] =I- 1].

J
k using Eq. (7).
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2. Calculate —% and —k
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3. Calculate {)— and
k (

y] using Egs. (5).

J

) k are vectors whose com-
aY,

ponents correspond to the values at the plxels. Given an intensity
measurement consisting of N pixels, we can thus rewrite Eq. (4) as
a matrix equation

Note that in Eq. (4), AII{, —k and
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From this equation, we want to find (AXj , Aij ). Because there
are more equations than variables, there may be no solution
(AX,?,AYk] ) to this equation. Therefore, we calculate the least-
squares solution which is given by
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and AiT is the transpose of Ai. Note that AiTA,{ is a 2 x 2 matrix,
so the computation of its inversion is computationally inexpensive.
Finally, the update equation for the probe position (X,f, ka) is given
by

x| =X -BAX], (11)
RE RN AN (12)

Here, B is a feedback parameter which defines the step size of
the update in the probe positions. Choosing smaller 8 in general
leads to accurate correction but the computation time is larger. The
value of $ can be chosen as 1, 0.5 or 0.1.

To compare our approach with NL optimization method, the
derivatives in NL optimization approach are calculated using dis-
crete Fourier Transform whereas we are using finite difference
method. On comparing the computational time of our approach
with the cross-correlation (CC) method [9], we have found that
each iteration of our method is less computationally expensive
than CC method. Here, in the probe position correction part, we
are using two Fourier transforms whereas the CC method uses
three Fourier transforms. Additionally, the CC method requires an
optimization in each iteration to find the cross-correlation peak.
Furthermore, in the section 3.4, we have carried out an actual com-
parison between CC method and proposed method.
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