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a b s t r a c t 

Atomic force microscope (AFM) is an analytical instrument which is used to study the surface structure 

and morphology of materials. The AFM can measure and observe samples either in air or liquid environ- 

ment. However, the standard AFM requires a long time to acquire accurate images and data. In our work, 

the compressive sensing (CS) was applied in order to reduce the imaging time, lower the interactions 

between the probe and the sample, finally avoid sample damage in AFM. Three samples (PAA film, TGG1 

grating and BOPP film) were used as the testing samples. Different image reconstruction algorithms (l1-ls, 

TVAL3, GPSR and IHT) were employed to reconstruct AFM image with different sampling rate. And vari- 

ous sampling patterns (Random Scan, Row Scan, SRM, Spiral Scan and Square-shape Scan) were used to 

obtain the undersampling data. A large number of experiments show that the choice of sampling pattern 

and image reconstruction algorithm has significant impact on the quality of the reconstructed images in 

AFM. Subsequently the reconstruction results of sample topographic images were analyzed and evaluated 

by the image quality indicators (PSNR and SSIM). The CS method can be used to obtain accurate images 

by reducing measurement data. It finally improves the measurement speed of AFM without cutting down 

the quality of AFM image. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Atomic force microscope (AFM) is a powerful instrument which 

is unique in its ability to observe nanometer-scale objects both in 

air and liquid environment. This unique capability also allows the 

AFM to be used in biological sciences as a nano-tool for various 

measurements under physiological solution environments [1,2] . Be- 

cause the Nyquist–Shannon sampling theorem is used to obtain 

AFM images, the standard AFM requires a long time to obtain an 

accurate image. Its slow measurement speed has prevented ex- 

pansion of its applications to observe dynamic behavior of active 

biomolecules. In addition, the probe tip exerts a small force on the 

surface of the sample, which can bring sample damage, especially 

the soft surface samples such as biological cells. It is important to 

improve measurement speed and reduce the tip–sample interac- 

tion force without sacrificing the imaging quality. 

There are three main methods to realize high-speed AFM for 

reducing the imaging time. Firstly, to make AFM tip move faster 

on the sample and improve the imaging quality, hardware up- 

grades are an option [3] . Various physical designs have been pro- 

posed to achieve high-speed AFM, such as small cantilevers, mi- 
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cro resonators, scanning stages, scanners with high resonance fre- 

quencies, new actuators and so on [4,5] . However, the complicated 

hardware design and modifications of standard AFM will bring ad- 

ditional hardware costs. The second solution for tackling the imag- 

ing speed problem is to use novel controllers and algorithms such 

as a combination of feed forward and feedback control algorithms 

and iterative control methods [6,7] . To reduce image scanning time 

and improve AFM measurement accuracy, many other approaches 

have been proposed by altering scanning routine and sampling 

strategies [8–10] . The third approach for speeding the imaging 

time in AFM is applying compressed sensing (CS) to AFM. CS is a 

new type of sampling theory in the field of sampling digital signals 

[11–13] . Signal can be reconstructed from significantly fewer mea- 

surements than the Nyquist–Shannon sampling theorem requires, 

if the signal can be compressed [14] . In the surface metrology and 

AFM measurement, CS is considered as an effective method to re- 

duce the imaging time by reducing the total number of samples 

[15–23] . An obvious benefit of applying CS to AFM is that sam- 

ple damage and probe tip abrasion are greatly reduced. Many scan 

patterns have been proposed to undersample the topography infor- 

mation of sample surface, such as random pattern, row scan pat- 

tern and spiral pattern [16,17,23] . In order to reconstruct accurate 

AFM images, many reconstruction algorithms have been proposed 

in AFM image reconstruction. However, there are still many prob- 
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lems to be solved in applying CS to AFM. Currently, there are no 

universally accepted scan patterns and reconstruction algorithms 

for CS in AFM. How to select the suitable reconstruction algorithm 

and determine the appropriate sampling rate are essential for ap- 

plying CS to AFM. 

In this paper, a series of simulation experiments were per- 

formed to illustrate the reconstruction capability of the CS in AFM. 

Various measurement matrices (scan pattern) were used to ob- 

tain the sampling data. Then, the obtained spare data were used 

to reconstruct AFM images by various of sparse reconstruction al- 

gorithms, such as l1-Regularized Least Squares (l1-ls), TV mini- 

mization by Augmented Lagrangian and Alternating Direction Al- 

gorithms (TVAL3), Gradient Projection for Sparse Reconstruction 

(GPSR) and Iterative Hard Thresholding (IHT). The reconstruction 

results of AFM images were discussed and analyzed. The measure- 

ment matrix and the sparse reconstruction algorithm are impor- 

tant factors which will impact the reconstruction results. Suitable 

measurement matrix and sparse reconstruction algorithms make 

many contributions to shorten the acquirement time of imaging 

and obtain the high-quality AFM images. 

2. Compressive sensing in AFM 

2.1. Compressive sensing algorithm 

Consider an unknown signal x , with at most k nonzero compo- 

nents in N -dimension. It is called k -sparse. If it takes M times lin- 

ear measurements to sample the signal x , it means it takes fewer 

measurements than signal dimension. 

y = �x (1) 

where y is the sampled vector with M � N data point. � is an 

M × N measurement matrix. Since the process is non-adaptive, 

the measurement matrix is selected beforehand. CS can recover 

the signal x from significantly fewer measurements, only M = 

O ( K log N ) , suggesting the potential of significant cost reduction in 

digital data acquisition. 

Many signals are not sparse. They can be not directly used in 

compressive sensing. Fortunately, most natural signals are com- 

pressible, that is the signal x could be transformed into sparse 

form through sparse basis � . 

x = �α (2) 

where α is the sparse representation of signal x . � is an N × N 

basis transform matrix. Then, the Eq. (1) changes into 

y = �x = ��α = Aα (3) 

where A = �� is M × N sensing matrix which should satisfy the 

restricted isometry property (RIP) [24] . 

2.2. Measurement matrices 

In general CS case, the measurement matrix can be chosen as 

a dense matrix such as Gaussian random matrix, Bernoulli Matri- 

ces, Random Partial Fourier Matrices, etc. Each measurement of CS 

typically relies on a linear combination of many elements of the 

signal. However, they are difficult to be applied in the AFM ap- 

plication due to the point-like nature of the AFM probe tip. The 

AFM probe tip only measures a single pixel at a time. Therefore, 

we need a special designed measurement matrix to measure the 

sample of AFM. An identity matrix with some of its row removed 

is a good choice in AFM application as the measurement matrix �

[16] . In each row of �, there is only a single one and zeros else- 

where. One possible realization is: 

�m ×n = 

⎡ 

⎢ ⎢ ⎣ 

0 1 0 · · · 0 0 

0 0 1 · · · 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 · · · 1 0 

⎤ 

⎥ ⎥ ⎦ 

(4) 

Such a measurement matrix ensures that only a single pixel of 

the image is required for each measurement. This unique measure- 

ment matrix could seem as AFM tip trajectory. The scan pattern of 

random sampling is shown in Fig. 1 (a). The black points are the 

AFM probe tip scanning trajectory on the surface of sample. 

Undersampling of raster scan is also a way to realize the CS 

measurement in AFM which means several rows of the raster is 

selected at random as the sampling data of CS. The row scan is 

shown in Fig. 1 (b). Fig. 1 (b) shows that the AFM probe tip has a 

relatively continuous scanning trajectory. The probe tip does not 

have to be lifted off the sample frequently, moved to the next 

point, and then re-engaged for the next measurement. Using raster 

scan, more sampling time can be reduced at the same sampling 

rate. 

Structurally random matrix (SRM) has sensing performance 

comparable to that of a Gaussian random matrix. An SRM is de- 

fined as a product of three matrices [25] 

� = cDF R (5) 

where c is a scalar constant. R is either an N × N uniform ran- 

dom permutation matrix or an N × N diagonal random matrix. 

The diagonal entries R ii of R are independent and identically 

distributed Bernoulli random variables with identical distribution 

P ( R ii = ±1 ) = 

1 
2 . F is a N × N orthonormal matrix and the popu- 

lar fast computable transform is a good choice such as the Fast 

Fourier Transform (FFT) or the discrete cosine transform (DCT). If 

� is dense and uniform, we can use the identity matrix for the 

transform F . A DCT matrix was chosen as the basis transform ma- 

trix � . So F is taken to be an N × N identity matrix. D is an M × N 

subsampling matrix. In matrix representation, D is simply a ran- 

dom subset of M rows of the identity matrix of size N × N . To 

reduce the sampling time, these M measurements need to be ar- 

ranged into μ-paths, each of length q [19] , that is, M 

q groups of 

rows of the N × N identity matrix are selected at random. The SRM 

scan with q = 4 are shown in Fig. 1 (c). The μ-paths can be set to 

any suitable value. Longer μ-paths leads to faster sampling speed, 

but worse reconstruction capability. 

A spiral trajectory is generated at a constant linear velocity [10] . 

The spiral scan pattern is plotted by mapping the sampling points 

along the spiral trajectory to points or pixels of the raster-scanned 

image. As shown in Fig. 1 (d), the AFM probe tip is engaged the en- 

tire time. Compared with other scan patterns, the spiral scan pat- 

tern can reduce more sampling time. The square-shape scan pat- 

tern is shown in Fig. 1 (e), it is similar to spiral scan pattern, and 

also has a smooth sampling path. 

2.3. Scanning time estimation 

In order to evaluate the performance of measurement matrices, 

the time cost of various data collection schemes should be rea- 

sonably estimated. For random scan and SRM, the sampling points 

are very scattered. When the probe moves between the two sets 

of sampling points, the probe needs to be lifted off the sample, 

moved to the next point, and then re-engaged for the next mea- 

surement. If the probe is doing this frequently, it will waste a lot 

of time. The scanning time when using random scan or SRM to 

collect data can be computed approximately as follows [26] : 

t R,SRM 

= a ×
(
t Zup + t Zdown 

)
+ δ × T (6) 
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