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a b s t r a c t 

We establish a series of deep convolutional neural networks to automatically analyze position averaged 

convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, cen- 

ter position, and rotation without the need for pretreating the data. With the aligned data, additional 

networks then measure the sample thickness and tilt. The performance of the network is explored as 

a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the re- 

sponse of the neural network to various pattern features is also presented. Processing patterns at a rate of 

∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while 

maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We 

also discuss the generality of the method to other materials/orientations as well as a hybrid approach 

that combines the features of the neural network with least squares fitting for even more robust analysis. 

The source code is available at https://github.com/subangstrom/DeepDiffraction . 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

For a highly convergent and coherent, ångström-sized elec- 

tron probe, the corresponding convergent beam electron diffrac- 

tion (CBED) disks strongly overlap to form a complex interference 

pattern. These patterns depend sensitively upon the position of 

the probe within the unit cell, but by averaging these patterns to- 

gether, a position averaged CBED (PACBED) pattern is created [1] . 

The patterns then depend strongly on sample thickness and tilt, 

and also reveal crystal polarity, changes in composition, octahedral 

distortions, and strain [2–8] . 

While PACBED patterns have been shown to be very sensitive to 

nanometer-level sample thickness differences and sub-milliradian 

tilt [1] , the patterns change with sample thickness in a non- 

intuitive way due to dynamical diffraction. Even so, visual inspec- 

tion is often sufficient to match experimental PACBED to a library 

of simulated ones. This process, however, is inherently subjective 

and time-consuming. To reduce human error and enhance the re- 

peatability of the measurements, a semi-automated approach is 

usually employed. To this end, least square fitting (LSF) has been 

the primary tool [3,4,8–10] . The parameter of interest, e.g. thick- 

ness, tilt, polarity, etc., is found by searching for the best fit 

amongst a library of patterns. While LSF can be precise and accu- 
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rate [10] , it is often time-consuming to fit a broad range of param- 

eters and avoid local minima. Beyond processing speed, patterns 

alignment is an additional limiting factor. Generally, some pretreat- 

ment of the data is required by the user to locate the precise pat- 

tern center and calibrate the pixel size/scale. Specimen tilt compli- 

cates this analysis by displacing the center of intensity mass from 

its true position. Furthermore, alignment is obfuscated by signifi- 

cant CBED disk overlap, which precludes the use of a Hough trans- 

form to locate the disk centers [10–13] . 

Beyond brute force methods, convolutional neural networks 

(CNNs) have enabled breakthrough image recognition performance, 

even within very complex scenes [14–21] . For example, CNNs have 

become the standard for applications ranging from face recogni- 

tion to self-driving cars. By combining multiple, deep convolutional 

layers with an appropriate training set, a CNN can automatically 

“learn” high-level representations needed for robust image classi- 

fication. While neural networks have shown promise for electron 

microscopy analysis, these powerful tools have only recently begun 

to be applied [22,23] . This is particularly relevant to automated 

PACBED analysis, as these networks have the potential to overcome 

many of the limitations of other methods. 

In this work, we develop a set of deep CNNs to automati- 

cally analyze PACBED patterns, extracting pattern size, center, ro- 

tation, specimen thickness, and specimen tilt. The training and 

processing speeds are accelerated by the implementation of GPU 

calculations. Further, we show that the network architecture en- 

ables fully automatic PACBED analysis without the need for human 
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supervision. The approach is compared to LSF using the same 

datasets and is found to be orders of magnitude faster after train- 

ing. Finally, we report various observations including application to 

4D STEM datasets, generalizability of the trained networks to other 

materials, and a hybrid approach to combine neural networks with 

LSF for fast, robust analysis of additional parameters. 

2. Materials & methods 

2.1. Experiment 

SrTiO 3 single crystals oriented along [100] and PbMg 1/3 Nb 2/3 O 3 , 

oriented along [110], were used throughout this study. The crys- 

tals were thinned to electron transparency using wedge-polishing 

and low energy ion-milling using a Fischione 1050 Ar ion mill. 

The PMN sample was carbon coated to reduce sample charging. 

A probe-corrected FEI Titan G2 STEM microscope was operated at 

200 kV with probe convergence semi-angle of either 13.6 mrad and 

19.1 mrad. The former convergence semi-angle is consistent with 

an uncorrected STEM, and also has many advantages in atomic 

resolution EDS elemental quantification [9] . The latter is consis- 

tent with that used for aberration-corrected, sub-angstrom STEM 

imaging. PACBED patterns were recorded using a Gatan UltraScan 

10 0 0XP CCD camera. 

SrTiO 3 PACBED patterns from experiment were used to create a 

database for performance testing. Using the 13.6 mrad probe, a to- 

tal number of 231 PACBED patterns were recorded from regions 6–

120 nm thick. For the 19.1 mrad probe, a total of 156 PACBEDs were 

captured at thicknesses ranging from 8 to 70 nm. In both cases, the 

patterns exhibited random tilts up to ∼ 4 mrad. The CCD acquisi- 

tion time was varied from 0.1 to 5 s, with a probe current of about 

80 pA to incorporate varying levels of noise into the database. A 

10 × 10 4D STEM dataset was collected over a 60 × 60 nm 

2 re- 

gion of the sample with an acquisition time of 1 s/pattern. 

2.2. Simulation 

To establish a library for neural network training, PACBED pat- 

terns were simulated using the Bloch wave method. The Many- 

Beam dynamical-simulations and least-squares FITting (MBFIT) 

software was used for this purpose [24] . Note that the original 

MBFIT source code was modified to generate the PACBED out- 

put with overlapped diffraction disks [6] . Patterns were calculated 

in 1 nm increments with thicknesses ranging from 1 to 120 nm 

at 13.6 mrad, and 1–80 nm for 19.1 mrad. At each thickness, a 

tilt series was also simulated with up to 4 mrad tilt along [100] 

and [010]. The tilts were separated by 0.25 mrad when tilt was 

< 1 mrad, and 0.5 mrad otherwise. In total, 4560 and 3040 PACBED 

patterns were simulated for 13.6 mrad and 19.1 mrad, respectively. 

2.3. Convolutional neural network 

The convolutional neural networks applied here are based on 

the AlexNet architecture, a description of which can be found in 

Ref. [25] . As seen in Fig. 1 , the CNN applied consists of multiple 

convolutional, nonlinear activation and pooling layers in its net- 

work architecture, followed by fully connected layers and softmax 

to conduct tasks for image classification. Each convolutional layer 

takes an input image (or feature map) (X 

l ) that is convolved with 

a bank of convolution kernels to produce new feature maps ( X 

l+1 ). 

In this way, pattern features are found through this convolutional 

process. The value at each pixel of the k th feature map, X 

l+1 

i l+1 , j l+1 ,k 
, 

is given by Eq. (1) , with unity stride and zero padding. 

X 

l+1 
i l+1 , j l+1 ,k 

= 

m −1 ∑ 

i =0 

m −1 ∑ 

j=0 

D l ∑ 

d l =0 

w i, j,d,k X 

l 
i l+1 + i, j l+1 + j,d l + b l k (1) 

where w i, j, d, k and b l 
k 

are weights and bias of the k th kernel. The 

kernels are m × m × D 

l × D 

l+1 in size. D 

l and D 

l+1 represent the 

channel size of the input and number of kernels in the convolu- 

tional layer, respectively. The output feature image X 

l+1 has the 

same number of channels as the number as convolutional ker- 

nels in D 

l+1 , representing a collection of convolved feature maps 

that aim to capture different image features from the input. More- 

over, the convolutional kernel weights are shared among the fea- 

ture maps, which provides feature location invariance and leads to 

reduced network complexity. 

The convolved map, X 

l+1 , is then passed through a quasi-linear 

activation function. In this study, a rectified linear unit (ReLU) 

function, max { 0 , X l+1 
i , j , k 

} , is implemented after each convolutional 

layer [26,27] . After ReLU, a channel-wise local response normal- 

ization is applied to the feature maps, aiming to improve net- 

work generalization [25] . The normalized feature maps are down- 

sampled via max-pooling, where the map is sub-divided and only 

the maximum within each sub-region is retained. The pooling pro- 

cess not only controls the number of parameters in the neural net- 

work, but also makes the feature detection less dependent on scale 

and/or orientation [28] . 

After max-pooling, the feature map is treated as input for the 

next convolutional layer, where the maps become sensitive to 

higher level features. In the complete (deep) CNN, multiple lev- 

els of convolutional–ReLU–normalization–max-pooling layers are 

sequentially stacked. This process abstracts features of different 

‘length-scales’ across the image and across the field of view. These 

abstracted units are then connected to neurons within the fully 

connected layers that reorganize the image features for identifica- 

tion, which is analogous to biological neurons. As a final step, the 

softmax activation layer converts the classified outputs to proba- 

bilities. For error backpropagation during the network training, a 

cross-entropy loss function is used [29] . 

2.4. PACBED measurement algorithm 

The overall neural network configuration to measure PACBED 

parameters can also be seen in Fig. 1 , which contains five sepa- 

rate CNNs trained. In the first stage, the zero order disk size, disk 

center, and pattern rotation angle are measured. The flow of the 

procedure is illustrated in Fig. 2 . There are a number of automated 

procedures that are applied before passing to the CNNs. Rough es- 

timates of the of the pattern center and size are provided by fitting 

the integrated intensity of the PACBED pattern along both horizon- 

tal and vertical direction to Gaussian functions. Precision here is 

not essential as these variables are iterated. 

The roughly centered and cropped patterns are then passed 

to subsequent CNNs to refine the center and shift measurements. 

To measure shift along both horizontal and vertical directions, 

the same CNN is used, but with the pattern rotated 90 °. Up- 

dated center and size variables are used to realign the original 

PACBED dataset until convergence. The rotation angle is then de- 

termined via another trained CNN, but without the need for it- 

eration. Prior to thickness and tilt measurements, uniform back- 

ground is subtracted from the pattern to account for the contri- 

bution from inelastic scattering. This improves the network per- 

formance, particularly when determining sample thicknesses above 

∼ 70 nm. For more details, see Section 4.1 . As part of this process, 

the background subtraction parameter is converged while deter- 

mining thickness and tilt. It is also important to note that only 

positive tilt values along [100] and [010] are measured using the 

CNN. This is justified by the four-fold symmetry for the zone con- 

sidered. We first align the patterns to the same rotation angle and 

then measure the sign of the tilt by finding the pattern quadrant 

that has the greatest intensity. This approach greatly reduces the 
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