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a b s t r a c t 

The sample dependent spatial resolution was calculated for transmission electron microscopy (TEM) and 

scanning TEM (STEM) of objects (e.g., nanoparticles, proteins) embedded in a layer of liquid water or 

amorphous ice. The theoretical model includes elastic- and inelastic scattering, beam broadening, and 

chromatic aberration. Different contrast mechanisms were evaluated as function of the electron dose, the 

detection angle, and the sample configuration. It was found that the spatial resolution scales with the 

electron dose to the −1/4th power. Gold- and carbon nanoparticles were examined in the middle of water 

layers ranging from 0.01—10 μm thickness representing relevant classes of experiments in both materials 

science and biology. The optimal microscope settings differ between experimental configurations. STEM 

performs the best for gold nanoparticles for all layer thicknesses, while carbon is best imaged with phase- 

contrast TEM for thin layers but bright field STEM is preferred for thicker layers. The resolution was also 

calculated for a water layer enclosed between thin membranes. The influence of chromatic aberration 

correction for TEM was examined as well. The theory is broadly applicable to other types of materials 

and sample configurations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Obtaining morphological information of specimens at the 

nanoscale is essential for developments in materials science, and 

nanotechnology, to understand chemical processes at interfaces, 

and to gain insights into the molecular machinery of life enclosed 

in the three-dimensional (3D) structure of proteins and the ultra- 

structure of cells. Transmission electron microscopy (TEM) has tra- 

ditionally been associated with the study of ultra-thin solid sam- 

ples in vacuum, achieving atomic resolution. Sub-Angstrom spa- 

tial resolution is even possible using scanning TEM (STEM) [1] . Al- 

ready since the early days of electron microscopy, scientists rec- 

ognized the importance to image under hydrated conditions such 

to maintain samples in realistic conditions [2] , which is of partic- 

ular importance for biological cells, proteins, water batteries, cat- 

alytic nanoparticles, and biominerals [3–7] . TEM and STEM un- 

der hydrated conditions is achieved by maintaining the specimen 

in amorphous ice [8] , and also electron microscopy of liquid wa- 

ter has become available with nanometer resolution in the past 

decade [4] . Of advantage for obtaining nanometer resolution in 

liquid-phase STEM is that the anticipated broadening effect on the 

resolution of Brownian motion appears to be largely reduced under 

certain experimental conditions [9] . 
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But despite the broad usage of STEM and TEM, it is often un- 

known what spatial resolution is possible for a specific sample, 

and, in addition, the choice between TEM or STEM is not always 

obvious. The optimal spatial resolution of TEM is traditionally cal- 

culated for a thin sample in vacuum imaged with phase contrast 

[10] . For STEM, the point spread function in vacuum is usually 

considered, which is of sub-Angstrom dimensions for aberration- 

corrected instruments [11] . For specimens in water, however, it is 

often impossible or undesirable to prepare an ultra-thin sample, so 

that the resolution becomes limited by other factors, such as spa- 

tial broadening and broadening of the energy spread of the elec- 

tron beam due to electron scattering in the water layer. Moreover, 

these specimens are typically dose sensitive so that the signal-to- 

noise-ratio SNR and not the intrinsic resolution of the electron op- 

tics becomes the limiting factor [4,12] . 

Here, a theoretical framework is provided for calculating the 

optimal spatial resolution for TEM and STEM in liquid water or 

amorphous ice as function of the different microscope settings 

and sample parameters. The aim of these calculation is to esti- 

mate the achievable resolution within a factor of two, which will 

be sufficient in many instances to optimize experimental designs 

for the best possible resolution for a given sample. Higher preci- 

sion would require more complex theoretical models [13,14] . The 

model includes the electron optical resolution, the signal-to-noise 

limited resolution, beam broadening, the type of material, and the 
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sample geometry. The calculations are based on analytical expres- 

sions of elastic- and inelastic electron scattering in a specimen 

[10] . For certain experimental configurations full analytical solu- 

tions are possible [15] but typically these solutions involve ap- 

proximations, such as applying Taylor series or neglecting inelastic 

scatting [16] . Alternatively, it is possible to simulate the scanning 

of an electron beam over a three-dimensional (3D) sample using 

Monte Carlo simulations [17,18] . Monte Carlo simulations provide 

precise calculations of the spatial resolution of, for example, bright 

field- or dark field STEM in thick specimens [19] . However, these 

are more time consuming, and require a fixed sample geometry so 

that they are less flexible, and moreover they are not applicable 

to TEM. The approach shown here is to numerically solve the an- 

alytical expressions. This is quicker and more flexible than Monte 

Carlo simulations but more precise than deriving full analytical so- 

lutions. The following section will introduce scattering contrast, 

beam broadening, and energy broadening. The optimal resolution 

for STEM and TEM will then be determined including the electron 

dose as important factor. Examples will be calculated for both dark 

field- and bright field STEM, and for TEM of nanoparticles of either 

gold or carbon in a water layer. These represent two key classes of 

relevant experiments, namely the study of nanomaterials of high 

atomic number (Z) in water, and the imaging of low-Z biological- 

or polymeric samples. The resolution will be examined as function 

of the water thickness, the vertical position of the nanoparticles in 

the sample, and the electron dose. These examples serve as guide 

for choosing between TEM and dark field- or bright field STEM. The 

influence of enclosing a water layer by membrane windows on the 

resolution will be calculated, and the possible benefit of chromatic 

aberration correction in TEM will be discussed as well. 

2. Theory 

2.1. Electron microscopy configurations 

Two electron microscopy modalities are available, STEM and 

TEM, for observing nanoscale objects (e.g., nanoparticle, protein) 

embedded in a layer of water. Each modality requires a different 

optimization of the experimental setup ( Fig. 1 ). Liquid water lay- 

ers are enclosed by thin windows [4] , and these are included in 

the calculations for precision. For STEM, the highest resolution is 

obtained for objects in the top of the water layer with respect to 

a downward traveling electron beam [4,12] . The STEM images are 

primarily formed by electrons that are elastically scattered by an 

angle larger than the opening semi-angle β of the annular dark 

field (ADF) detector. The probe size of the STEM in vacuum is typ- 

ically much smaller than the achieved resolution, because the res- 

olution is limited by the signal-to-noise-ratio in the image for ob- 

jects in the top of the water layer and by beam broadening due to 

electron scattering for objects deeper in the water layer [12] . For 

the calculations below, it is assumed that the objects under ob- 

servation are in the focal plane for STEM so that geometric beam 

broadening can be neglected. 

The highest resolution is obtained for objects at the bottom of 

the water layer for TEM [4] . The opening semi-angle of the scat- 

tered electron beam α is set by the objective aperture. The reso- 

lution is determined by several factors including chromatic aberra- 

tion of the objective lens and the energy spread of the beam that is 

broadened by scattering in the water layer [4] . It is assumed in the 

following that the defocus is adjusted at the Scherzer optimum. 

2.2. Electron scattering principles 

2.2.1. Electron scattering cross sections 

In order to calculate scattering contrast in TEM or STEM, both 

elastic- and inelastic electron scattering are considered. Elastic 

scattering dominates dark field contrast for larger detection angles. 

Inelastic scattering mostly leads to small angular deviations and 

needs to be included for calculations involving small angles (be- 

low 10 mrad). For typical settings, elastic scattering is calculated 

using the partial cross section for elastic scattering σ el ( θ ) assum- 

ing a screened Rutherford scattering model based on a Wentzel po- 

tential for single scattering events by an angle θ or larger [10] : 

σel ( θ ) = ( 1 /π ) Z 4 / 3 λ2 ( 1 + E/E 0 ) 
2 1 

1 + ( θ/θ0 ) 
2 

(1) 

with atomic number Z , electron energy E, and the relativistic wave- 

length of the electron: 

λ = 

hc √ 

2 E E 0 + E 2 
(2) 

with Planck’s constant h , the speed of light c , and the rest energy 

given by: 

E 0 = m 0 c 
2 (3) 

with the rest mass of the electron m 0 . The characteristic angle is 

given by: 

θ0 = 

λZ 1 / 3 

2 πa H 
(4) 

with Bohr radius a H . 

The scattering cross section for inelastic scattering is given by 

Reimer and Kohl [10] : 

σinel (θ ) = (4 /π ) Z 1 / 3 λ2 (1 + E/ E 0 ) 
2 

×
[

−1 

4(1 + (θ/ θ0 ) 
2 
) 

+ ln 

√ 

1 + ( θ0 /θ ) 
2 
) 

]
(5) 

The total cross section is then obtained via [10] : 

σ (θ ) = σel (θ ) + σinel (θ ) (6) 

2.2.2. Scattering by a specimen 

To calculate dark field scattering contrast, the amount of elec- 

trons N scattered by θ or larger for a certain thickness of a material 

t is obtained as follows [10] : 

N 

N 0 

= 1 − e −t/l ( θ ) (7) 

with N 0 the number of incident electrons, and the mean-free-path 

length for elastic scattering l ( θ ) given by: 

l ( θ ) = 

W 

σ ( θ ) ρN A 

(8) 

with mass density ρ , the atomic weight W and Avogadro’s num- 

ber N A . Note that l ( θ ) depends on the detector opening angle be- 

cause scattering events leading to scattering at higher angles oc- 

cur less frequently. Thus, a longer mean free path between scat- 

tering events applies for scattering into larger angles. Eq. (8) not 

only applies for single elements but also for molecules comprising 

of different elements. The mean-free-path length for molecules is 

calculated from averaging the different values of W weighted by 

molar fractions, ρ is usually known in literature, and an average 

σ is calculated from σ ( θ ) for each element and accounting for the 

molecular fractions [12,15,20,21] . For water one thus obtains: 

σel ,H 2 O ( θ ) = 0 . 67 σel ,H ( θ ) + 0 . 33 σel ,O ( θ ) (9) 

Alternatively, the average 〈 Z 〉 value of a molecule can be used, 

which equals 4.7 for water, and was shown to accurately describe 

experimental data [12,20] . 

Bright field scattering contrast is calculated from the amount of 

electrons not scattered by θ or larger M [10] : 

M 

N 0 

= e −t/l ( θ ) (10) 
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