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a b s t r a c t 

The field enhancement factor at the emitter tip and its variation in a close neighbourhood determines the 

emitter current in a Fowler–Nordheim like formulation. For an axially symmetric emitter with a smooth 

tip, it is shown that the variation can be accounted by a cos ̃  θ factor in appropriately defined normalized 

co-ordinates. This is shown analytically for a hemiellipsoidal emitter and confirmed numerically for other 

emitter shapes with locally quadratic tips. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The field of vacuum nanoelectronics involves field electron 

emitters with sharp tips having radius of curvature in the nanome- 

ter regime [1] . Due to the high aspect ratio, such emitters can 

have a large field enhancement factor, γ a , at the apex (tip). Sev- 

eral models have been studied to gain insight into the dependence 

of height ( h ) and apex radius of curvature ( R a ) on γ a [2–8] . Of 

these, the hemiellipsoid and hyperboloid emitters are analytically 

tractable [9–11] while the floating sphere at plane potential has 

been studied extensively but its predictions ( γ a � h / R a ) far exceed 

the known results for γ a especially for sharp emitters [12,13] . A 

much studied numerical model is a cylindrical post with a hemi- 

spherical top [14] for which various fitting formulas for γ a exist. A 

straightforward estimate [3] is γ a � 0.7( h / R a ) while more elaborate 

ones [2–5,7] are expressed as γa � a (b + h/R a ) σ with 0.9 < σ ≤ 1. 

The h / R a dependence of γ a can be expected for various other ver- 

tically placed emitter shapes, though there are very few concrete 

results. 

While there is some understanding of the local field enhance- 

ment at the emitter apex, its variation in the neighbourhood of the 

tip is not as clear. For the hemisphere on a plane, γ (θ ) = γa cos θ, 

where γa = 3 and the origin is the center of the (hemi)sphere. For 

the hemiellipsoid or the hyperboloid, the local field at the emit- 

ter surface is known, though a geometric formula analogous to the 

hemisphere (the cos θ dependence) is not known to exist. A re- 

cent numerical study [15] on the hemiellipsoid using the Ansys–

Maxwell software includes the variation of γ with angle θ from 

the center of the ellipsoid. For a hemisphere on a cylindrical post 

with the origin at the center of the hemisphere, the variation with 

θ was reported to be quadratic [4] while another study [5] found 
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a cos 1/2 θ factor to be appropriate. In both cases, the angle is mea- 

sured from the centre of the sphere. For a conical emitter rounded 

at the apex, Spindt et al. [16] found the θ dependence (measured 

from the centre of curvature at the tip) to be small close to the 

apex though a later study [17] shows a sharper variation for small 

θ . Clearly, more studies are required to understand the variation of 

γ close to the apex. 

The importance of the apex and its immediate neighbourhood 

arises from the fact that for sharp emitters, the enhancement fac- 

tor generally falls rapidly away from the apex even for a decrease 

in height by only R a . As a result, the tunneling transmission coeffi- 

cient can fall by several orders of magnitude rendering the rest of 

the emitter inconsequential. The emitter current can thus be ex- 

pressed as 

I = 

∫ ρmax 

0 

2 πρ
√ 

1 + (d z/d ρ) 2 J(r ) dρ (1) 

where r = (ρ, z) is a point on the emitter surface, ρ = 

√ 

x 2 + y 2 

and ρmax is a cutoff set by accuracy requirements. Here J ( r ) is the 

local current density [18–23] on the emitter surface, calculated by 

taking into account the local field enhancement factor γ ( r ). The 

enhancement factor γ ( r ) around the apex thus holds the key in 

any field emission calculation. 

In the following, we shall first study the field enhancement fac- 

tor for the hemiellipsoid and cast it in a generalized form γ = 

γa cos ˜ θ where ˜ θ is defined using normalized co-ordinates ( ̃  ρ, ̃  z ). 

We shall then deal with locally quadratic emitter tips and show 

numerically that the enhancement factor variation is well de- 

scribed by this generalization. 

It may be noted that for all the cases considered in this paper, 

the emitting tip is at lower electrostatic potential compared to the 

anode plate so that electric field is directed towards the tip surface. 

Thus the force on an electron near the emitting surface is directed 

away from emitter surface. Unless otherwise stated, symbol E is 
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used to denote the classical electrostatic field, the symbol E is used 

to denote its signed magnitude and classical electrostatic potential 

is denoted by V , with E = −∇V [24] . 

2. Field enhancement for the hemiellipsoid 

The vertical hemiellipsoid on a grounded conducting plane 

placed in an external electrostatic field ( −| E 0 | ̂ z ) pointing along 

the axial direction is one of few analytically solvable models that 

have helped in understanding local field enhancement. It is conve- 

nient to work in prolate spheroidal coordinate system ( ξ , η, φ) [25] . 

These are related to the Cartesian coordinates by the following re- 

lations: 

x = L 
√ 

( η2 − 1)(1 − ξ 2 ) cos φ

y = L 
√ 

( η2 − 1)(1 − ξ 2 ) sin φ

z = Lξη, (2) 

where L = 

√ 

h 2 − b 2 , h is the height and b is the radius of the base 

of the hemiellipsoid respectively. Note that a surface obtained by 

fixing η = η0 in this coordinate system is an ellipsoid. For a prolate 

hemiellipsoid on a grounded plane in the presence of an external 

electrostatic field −| E 0 | ̂ z , the solution of Laplace equation may be 

written as [9,26] , 

V (η, ξ ) = ξη
[ 

C ′ + D 

′ 
(

1 

2 

ln 

η + 1 

η − 1 

− 1 

η

)] 
, (3) 

where C ′ = L | E 0 | and 

D 

′ = −L | E 0 | 
(

1 

2 

ln 

η0 + 1 

η0 − 1 

− 1 

η0 

)−1 

(4) 

where η = η0 is the surface of the emitter. 

In order to relate this to the enhancement factor, γ , we need to 

find the normal derivative of the potential, V at the surface of the 

emitter. To do so, we first note that 

E local = − ˆ η

[
1 

h η

∂V 

∂η

]
η= η0 

(5) 

where 

h η = 

√ 

L 2 

η2 
0 

− 1 

(η2 
0 

− ξ 2 ) . (6) 

The magnitude of the local electric field normal to the surface η = 

η0 is thus given by 

E local = − ξ

h η

[
C ′ + 

D 

′ 
2 

ln 

η0 + 1 

η0 − 1 

− D 

′ η0 

η2 
0 

− 1 

]
(7) 

Note that at the apex of the hemiellipsoid ξ = 1 . Thus 

γ

γa 
= 

ξ
√ 

η2 
0 

− 1 √ 

η2 
0 

− ξ 2 
(8) 

Further, with ξ = z/h, L 2 = h 2 − b 2 , R a = b 2 /h and z 2 /h 2 + ρ2 /b 2 = 

1 , we have 

γ = γa ξ

√ 

b 2 

b 2 

h 2 
z 2 + h 

2 − z 2 
(9) 

so that 

γ = γa ξ

√ 

b 2 

b 2 

h 2 
z 2 + 

h 2 

b 2 
ρ2 

(10) 

and finally 

γ = γa 
z/h √ 

(z/h ) 2 + (ρ/R a ) 2 
. (11) 

With ˜ z = z/h and ˜ ρ = ρ/R a , we define 

cos ˜ θ = 

˜ z √ 

˜ z 2 + ˜ ρ2 
(12) 

so that γ = γa cos ˜ θ . In the limit of the hemisphere where h = R = 

R a , ˜ θ = θ . Thus, both the hemiellipsoid and hemisphere can be de- 

scribed by Eq. (11) . 

3. Quadratic surfaces 

Generic smooth axially symmetric vertical emitter tips can be 

described as z = z(ρ) . A Taylor expansion at the apex yields 

z = h + 

1 

2 

(
d 2 z 

dρ2 

)
ρ=0 

ρ2 + . . . (13) 

� h 

[ 
1 − 1 

2 

ρ

R a 

ρ

h 

] 
(14) 

where R a is the magnitude of the apex radius of curvature and h 

is the height of the emitter. We have assumed that the quadratic 

term is non-zero since (d 2 z/dρ2 ) ρ=0 = 0 implies that the tip is flat 

rather than having a small radius of curvature characteristic of field 

emitters. Also, since field emission occurs close to the tip, we shall 

ignore higher order terms in ρ as in Eq. (14) . 

The ellipsoid for instance can be expanded as 

z = h 

[ 
1 − 1 

2 

ρ

R a 

ρ

h 

− 1 

8 

(
ρ

R a 

)2 (ρ

h 

)2 

− 1 

16 

(
ρ

R a 

)3 (ρ

h 

)3 

− . . . 

] 
(15) 

which reduces to 

z = R 

[ 
1 − 1 

2 

(
ρ

R 

)2 

− 1 

8 

(
ρ

R 

)4 

− 1 

16 

(
ρ

R 

)6 

− . . . 

] 
(16) 

for the sphere. For hemiellipsoidal emitters with large h , a 

quadratic truncation seems adequate. 

Such quadratic emitter tips can thus be considered generic for 

purposes of field emission. They may be mounted on a variety of 

bases, ranging from the classical cylindrical post typical of carbon 

nanotubes to the conical bases of a Spindt array [16] or even be 

part of compound structures. We shall study the applicability of 

Eq. (11) for such emitter tips numerically [27,28] . 

4. Numerical studies 

We shall adopt the nonlinear line charge model [26,29] to de- 

termine the electrostatic potential and thus the field enhancement 

factor. It consists of a vertically placed line charge of height L 

on a grounded plane in the presence of an external electrostatic 

field | E 0 |. The line charge together with its image and the exter- 

nal field produces a zero-potential surface that coincides with the 

emitter surface under study. The shape of the zero-potential sur- 

face crucially depends on the line charge density. Thus for a lin- 

ear line charge density the shapes generated are hemiellipsoidal, 

while non-linear line charge densities can generate a wide variety 

of shapes including a conical base with a quadratic top. 

For our purposes, we consider a polynomial line charge den- 

sity �(z) = 

∑ N 
n =0 c n z 

n with the coefficients c n chosen appropri- 
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