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The field enhancement factor at the emitter tip and its variation in a close neighbourhood determines the
emitter current in a Fowler-Nordheim like formulation. For an axially symmetric emitter with a smooth
tip, it is shown that the variation can be accounted by a cosé factor in appropriately defined normalized
co-ordinates. This is shown analytically for a hemiellipsoidal emitter and confirmed numerically for other

emitter shapes with locally quadratic tips.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The field of vacuum nanoelectronics involves field electron
emitters with sharp tips having radius of curvature in the nanome-
ter regime [1]. Due to the high aspect ratio, such emitters can
have a large field enhancement factor, y4, at the apex (tip). Sev-
eral models have been studied to gain insight into the dependence
of height (h) and apex radius of curvature (Rq;) on y, [2-8]. Of
these, the hemiellipsoid and hyperboloid emitters are analytically
tractable [9-11] while the floating sphere at plane potential has
been studied extensively but its predictions (y4 ~ h/R;) far exceed
the known results for y, especially for sharp emitters [12,13]. A
much studied numerical model is a cylindrical post with a hemi-
spherical top [14] for which various fitting formulas for y, exist. A
straightforward estimate [3] is y4 =~ 0.7(h/R,) while more elaborate
ones [2-5,7] are expressed as y, ~a(b+h/Rq)° with 09<0o <1.
The h/R, dependence of y, can be expected for various other ver-
tically placed emitter shapes, though there are very few concrete
results.

While there is some understanding of the local field enhance-
ment at the emitter apex, its variation in the neighbourhood of the
tip is not as clear. For the hemisphere on a plane, y (6) = yqcos@,
where y, = 3 and the origin is the center of the (hemi)sphere. For
the hemiellipsoid or the hyperboloid, the local field at the emit-
ter surface is known, though a geometric formula analogous to the
hemisphere (the cos® dependence) is not known to exist. A re-
cent numerical study [15] on the hemiellipsoid using the Ansys-
Maxwell software includes the variation of y with angle 6 from
the center of the ellipsoid. For a hemisphere on a cylindrical post
with the origin at the center of the hemisphere, the variation with
6 was reported to be quadratic [4] while another study [5] found
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a cos 1120 factor to be appropriate. In both cases, the angle is mea-
sured from the centre of the sphere. For a conical emitter rounded
at the apex, Spindt et al.[16] found the # dependence (measured
from the centre of curvature at the tip) to be small close to the
apex though a later study [17] shows a sharper variation for small
6. Clearly, more studies are required to understand the variation of
y close to the apex.

The importance of the apex and its immediate neighbourhood
arises from the fact that for sharp emitters, the enhancement fac-
tor generally falls rapidly away from the apex even for a decrease
in height by only R,. As a result, the tunneling transmission coeffi-
cient can fall by several orders of magnitude rendering the rest of
the emitter inconsequential. The emitter current can thus be ex-
pressed as

I= /Op 271 p/1 + (dz/dp)2(x) dp (1)

where r = (p,z) is a point on the emitter surface, p = /x2 + y?
and pmax is a cutoff set by accuracy requirements. Here J(r) is the
local current density [18-23] on the emitter surface, calculated by
taking into account the local field enhancement factor y(r). The
enhancement factor y(r) around the apex thus holds the key in
any field emission calculation.

In the following, we shall first study the field enhancement fac-
tor for the hemiellipsoid and cast it in a generalized form y =
yacos@ where @ is defined using normalized co-ordinates (g, 2).
We shall then deal with locally quadratic emitter tips and show
numerically that the enhancement factor variation is well de-
scribed by this generalization.

It may be noted that for all the cases considered in this paper,
the emitting tip is at lower electrostatic potential compared to the
anode plate so that electric field is directed towards the tip surface.
Thus the force on an electron near the emitting surface is directed
away from emitter surface. Unless otherwise stated, symbol E is
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used to denote the classical electrostatic field, the symbol E is used
to denote its signed magnitude and classical electrostatic potential
is denoted by V, with E = —VV [24].

2. Field enhancement for the hemiellipsoid

The vertical hemiellipsoid on a grounded conducting plane
placed in an external electrostatic field (—|Eg|Z) pointing along
the axial direction is one of few analytically solvable models that
have helped in understanding local field enhancement. It is conve-
nient to work in prolate spheroidal coordinate system (&, n, ¢) [25].
These are related to the Cartesian coordinates by the following re-
lations:

x=Ly(n*-1)(1-§%)cos¢

y=L/(?-1)(1-§2)sin¢
z=1E&n, (2)

where L = /h2 — b2, h is the height and b is the radius of the base
of the hemiellipsoid respectively. Note that a surface obtained by
fixing n = 7o in this coordinate system is an ellipsoid. For a prolate
hemiellipsoid on a grounded plane in the presence of an external
electrostatic field —|Ey|Z, the solution of Laplace equation may be
written as [9,26],

wer-afeo(jnlt ]

where " = L|Ey| and
1 1 1\
D' = —L|E| (7 mlet 7) 4)
2 mo—-1 1o
where 1 = 1 is the surface of the emitter.
In order to relate this to the enhancement factor, y, we need to
find the normal derivative of the potential, V at the surface of the
emitter. To do so, we first note that

|10V
Elocal = 77|:] (5)
hy 9 n=no
where
hy= | (2 — £2). (6)
n 7’}%—1 0

The magnitude of the local electric field normal to the surface n =
no is thus given by

(7)
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Note that at the apex of the hemiellipsoid & = 1. Thus
v _svm-1 (8)
v €

Further, with & = z/h, [2 = h2 — b?, Ry = b%/h and Z2/h? + p?/b? =
1, we have

b2
Y =Yd m 9)
so that
p2
Y =V m (10)
and finally
z/h (11)

Y =Va .
v (z/M)? 4+ (p/Ra)?

With Z =z/h and p = p/R,, we define

cosf= 2 (12)
V22 + p?
so that ¥ = y, cos@. In the limit of the hemisphere where h = R =

Ra. 9 = 6. Thus, both the hemiellipsoid and hemisphere can be de-
scribed by Eq. (11).

3. Quadratic surfaces

Generic smooth axially symmetric vertical emitter tips can be
described as z = z(p). A Taylor expansion at the apex yields

1/d%z 2
Z=h+i<w>p=op +... (13)
N 1pp
_h[ _EEH] (14)

where R; is the magnitude of the apex radius of curvature and h
is the height of the emitter. We have assumed that the quadratic
term is non-zero since (dzz/d,oz)pzo = 0 implies that the tip is flat
rather than having a small radius of curvature characteristic of field
emitters. Also, since field emission occurs close to the tip, we shall
ignore higher order terms in p as in Eq. (14).

The ellipsoid for instance can be expanded as

1

R OICROICES
- 2R, h  8\R, h 16 \ R, h
which reduces to

1/p\2 1/p\* 1 /p\®
2=R[1-3(%) ~5(%) ~w(%) —] (10)
for the sphere. For hemiellipsoidal emitters with large h, a
quadratic truncation seems adequate.

Such quadratic emitter tips can thus be considered generic for
purposes of field emission. They may be mounted on a variety of
bases, ranging from the classical cylindrical post typical of carbon
nanotubes to the conical bases of a Spindt array [16] or even be
part of compound structures. We shall study the applicability of
Eq. (11) for such emitter tips numerically [27,28].

(15)

4. Numerical studies

We shall adopt the nonlinear line charge model [26,29] to de-
termine the electrostatic potential and thus the field enhancement
factor. It consists of a vertically placed line charge of height L
on a grounded plane in the presence of an external electrostatic
field |Eg|. The line charge together with its image and the exter-
nal field produces a zero-potential surface that coincides with the
emitter surface under study. The shape of the zero-potential sur-
face crucially depends on the line charge density. Thus for a lin-
ear line charge density the shapes generated are hemiellipsoidal,
while non-linear line charge densities can generate a wide variety
of shapes including a conical base with a quadratic top.

For our purposes, we consider a polynomial line charge den-
sity A(z) = Z’,;’ZO cnz" with the coefficients ¢, chosen appropri-
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