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1. Introduction

The first successful geometric and chromatic aberration cor-
rection system for a low-voltage scanning electron microscope
(LVSEM) was realized by Zach and Haider [1]. Since then, the aber-
ration correction for electron microscopy (EM) has made great
progress [2-5]. In 2011 Leary and Brydson published an arti-
cle entitled by “Chromatic aberration correction: the next step
in electron microscopy” [6] to elucidate the importance of chro-
matic aberration correction in the future although C. correction
faces competition from other techniques, such as improved elec-
tron sources, beam monochromators, energy filters, and so on. Re-
cently, owing to the application of combined chromatic and spher-
ical aberration correction in high-resolution transmission electron
microscopy (HRTEM), a huge step has been made forward in the
aberration correction in EM. Now we can achieve the spatial res-
olution down to 50 pm at 200kV [7] and a resolution better than
140 pm at 20kV [8].

In theory, it was as early as 2002 that Rose [9] and Plies
[10] did investigate up to the third-rank chromatic aberration
in detail. Afterwards, Liu [11] analytically derived the third-order
(fourth-rank) chromatic aberration coefficients of round electron
lenses in terms of Mathematica [12]. However, the expressions
of third-rank chromatic aberration coefficients of round electron
lenses were not published in the literature until the present work.
They were also analytically derived and numerically calculated
by Mathematica and cross-checked by the differential algebraic
method [13]. It is hoped that this work would be helpful for fur-
ther chromatic aberration correction in EM.
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2. Second-degree perturbation of variational function
2.1. In fixed coordinates

In the analytical derivation of third-rank chromatic aberration
coefficients of round electron lenses we start from the second-
order variational function of the rotationally symmetric electro-
magnetic field in a fixed coordinate system [14],
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where R=(X,Y), R =(X',Y'), and R*=(-Y,X) are two-
dimensional vectors in the fixed coordinate system. V =V (X,Y, z)
is the axial electric potential distribution, B = Byb(z) the axial
magnetic field distribution [14], and n = ,/e/2m, respectively. Its
up to the second-degree perturbation of the variational function
caused by the fluctuation of both electric (or electron initial
energy) and magnetic field is written as
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In Eq. (2) we have
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Note that the subscript in V, is letter “0” meaning the object side
and the subscript in By is zero. Below we will use the correspond-
ing rotational coordinate system (x, y, z) to discuss the third-rank
chromatic aberration.

2.2. In rotational coordinates

According to Eqs. (2) and (3) and the rotational transform in
electron optics, up to the second-degree perturbation of the varia-
tional function in rotational coordinates is
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2.3. Gaussian values of fy, fp, and fy,

Now we substitute the Gaussian trajectory,
Ty = Ify + Tol'g,
g = Iyly +Tolp,
ry =1 rg + 1,75, (8)

for r, ¥/, and r* in Eq. (4) to obtain the Gaussian values of fy, fz,
and fy,. Their unified forms are
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where subscript X stands for V, B, or V2, respectively. These Gaus-
sian values play an important role in aberration analysis and will
be involved in the third-rank chromatic aberration coefficients.

Furthermore, for the later use in this context [15], we introduce
&xg and ey that are defined as

8Xg(z) = /Z fngZ

exijk(2) = /Z Fxixdz. (10)

3. Third-rank chromatic aberration

It is well known that the electron trajectory including the third-
rank chromatic aberration is expressed as

Te =Tg+ Arg + Arg, (11)

where 1, is the Gaussian trajectory, Ar¢y the second-rank (first-
order plus first-degree) chromatic aberration, and Ar., the third-
rank (first-order plus second-degree) chromatic aberration, respec-
tively. Therefore, the corresponding trajectory equation is written

as
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Considering the Gaussian trajectory equation and the second-rank
chromatic aberration equation, we immediately obtain the equa-
tion for the third-rank chromatic aberration as follows:
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where subscripts “g” and “c1” stand for (r= rg,r’ =1y 1=
rg,r’* = r’*) and (r=Arq, 17 = Arj, 1 = Ari . 1" = Ar'%), re-
spectively.

In order to solve Eq. (13) concisely, we divide the third-rank
chromatic aberration into two components, i. e. Arg = Arg; +
Aree, in which Ary; and Arg. are respectively called the intrin-

sic and combined chromatic aberration.

3.1. Intrinsic chromatic aberration

From Eq. (13) the third-rank intrinsic chromatic aberration sat-
isfies the following equation:
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Argi(zo) =0 and Arl,(z,) =0. (14)

It is clear that the perturbation caused by the magnetic field has
no contribution to the third-rank intrinsic chromatic aberration. By
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