
Ultramicroscopy 185 (2018) 27–31 

Contents lists available at ScienceDirect 

Ultramicroscopy 

journal homepage: www.elsevier.com/locate/ultramic 

Third-rank chromatic aberrations of electron lenses 

Zhixiong Liu 

Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China 

a r t i c l e i n f o 

Article history: 

Received 28 June 2017 

Accepted 13 November 2017 

Available online 14 November 2017 

Keywords: 

Electron lens 

Chromatic aberration 

Mathematica 

Differential algebra 

a b s t r a c t 

In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically 

derived and numerically calculated by Mathematica . Furthermore, the numerical results are cross-checked 

by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic 

aberration coefficients are completely correct. It is hoped that this work would be helpful for further 

chromatic aberration correction in electron microscopy. 
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1. Introduction 

The first successful geometric and chromatic aberration cor- 

rection system for a low-voltage scanning electron microscope 

(LVSEM) was realized by Zach and Haider [1] . Since then, the aber- 

ration correction for electron microscopy (EM) has made great 

progress [2–5] . In 2011 Leary and Brydson published an arti- 

cle entitled by “Chromatic aberration correction: the next step 

in electron microscopy” [6] to elucidate the importance of chro- 

matic aberration correction in the future although C c correction 

faces competition from other techniques, such as improved elec- 

tron sources, beam monochromators, energy filters, and so on. Re- 

cently, owing to the application of combined chromatic and spher- 

ical aberration correction in high-resolution transmission electron 

microscopy (HRTEM), a huge step has been made forward in the 

aberration correction in EM. Now we can achieve the spatial res- 

olution down to 50 pm at 200 kV [7] and a resolution better than 

140 pm at 20 kV [8] . 

In theory, it was as early as 2002 that Rose [9] and Plies 

[10] did investigate up to the third-rank chromatic aberration 

in detail. Afterwards, Liu [11] analytically derived the third-order 

(fourth-rank) chromatic aberration coefficients of round electron 

lenses in terms of Mathematica [12] . However, the expressions 

of third-rank chromatic aberration coefficients of round electron 

lenses were not published in the literature until the present work. 

They were also analytically derived and numerically calculated 

by Mathematica and cross-checked by the differential algebraic 

method [13] . It is hoped that this work would be helpful for fur- 

ther chromatic aberration correction in EM. 
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2. Second-degree perturbation of variational function 

2.1. In fixed coordinates 

In the analytical derivation of third-rank chromatic aberration 

coefficients of round electron lenses we start from the second- 

order variational function of the rotationally symmetric electro- 

magnetic field in a fixed coordinate system [14] , 
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where R = (X, Y ) , R 

′ = (X ′ , Y ′ ) , and R 

∗ = (−Y, X ) are two- 

dimensional vectors in the fixed coordinate system. V = V (X, Y, z) 

is the axial electric potential distribution, B = B 0 b(z) the axial 

magnetic field distribution [14] , and η = 

√ 
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up to the second-degree perturbation of the variational function 

caused by the fluctuation of both electric (or electron initial 

energy) and magnetic field is written as 

�F 2 = F V 

(
�V o 

V o 

)
+ F B 

(
�B 0 

B 0 

)
+ F V2 

(
�V o 

V o 

)2 

+ F B2 

(
�B 0 

B 0 

)2 

+ F VB 

(
�V o 

V o 

)(
�B 0 

B 0 

)
, (2) 

In Eq. (2) we have 
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Note that the subscript in V o is letter “o” meaning the object side 

and the subscript in B 0 is zero. Below we will use the correspond- 

ing rotational coordinate system ( x, y, z ) to discuss the third-rank 

chromatic aberration. 

2.2. In rotational coordinates 

According to Eqs. (2) and (3) and the rotational transform in 

electron optics, up to the second-degree perturbation of the varia- 

tional function in rotational coordinates is 
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2.3. Gaussian values of f V , f B , and f V2 

Now we substitute the Gaussian trajectory, 

r g = r ′ o r α + r o r β, 

r ′ g = r ′ o r ′ α + r o r 
′ 
β, 

r ∗g = r ′ ∗o r α + r ∗o r β, (8) 

for r , r ′ , and r ∗ in Eq. (4) to obtain the Gaussian values of f V , f B , 

and f V2 . Their unified forms are 
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where subscript X stands for V, B, or V2, respectively. These Gaus- 

sian values play an important role in aberration analysis and will 

be involved in the third-rank chromatic aberration coefficients. 

Furthermore, for the later use in this context [15] , we introduce 

ε Xg and ε X ,ijk that are defined as 

ε Xg (z) = 

∫ z 

z o 

f Xg d z 

ε X, ijk (z) = 
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z o 

f X, ijk d z. (10) 

3. Third-rank chromatic aberration 

It is well known that the electron trajectory including the third- 

rank chromatic aberration is expressed as 

r c = r g + �r c1 + �r c2 , (11) 

where r g is the Gaussian trajectory, �r c1 the second-rank (first- 

order plus first-degree) chromatic aberration, and �r c2 the third- 

rank (first-order plus second-degree) chromatic aberration, respec- 

tively. Therefore, the corresponding trajectory equation is written 

as 
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Considering the Gaussian trajectory equation and the second-rank 

chromatic aberration equation, we immediately obtain the equa- 

tion for the third-rank chromatic aberration as follows: 
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where subscripts “g” and “c1” stand for (r = r g , r 
′ = r ′ g , r ∗ = 

r ∗g , r ′ ∗ = r ′ ∗g ) and (r = �r c 1 , r 
′ = �r ′ c 1 , r ∗ = �r ∗c 1 , r 

′ ∗ = �r ′ ∗c 1 ) , re- 

spectively. 

In order to solve Eq. (13) concisely, we divide the third-rank 

chromatic aberration into two components, i. e. �r c2 = �r c2i + 

�r c2c , in which �r c2i and �r c2c are respectively called the intrin- 

sic and combined chromatic aberration. 

3.1. Intrinsic chromatic aberration 

From Eq. (13) the third-rank intrinsic chromatic aberration sat- 

isfies the following equation: 
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It is clear that the perturbation caused by the magnetic field has 

no contribution to the third-rank intrinsic chromatic aberration. By 
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