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a b s t r a c t 

In a transmission electron microscope, electron illumination beam tilt, or the degree of deviation of elec- 

tron beam from its optical axis, is an important parameter that has a significant impact on image contrast 

and image interpretation. Although a large beam tilt can easily be noticed and corrected by the standard 

alignment procedure, a small residual beam tilt is difficult to measure and, therefore, difficult to ac- 

count for quantitatively. Here we report a quantitative method for measuring small residual beam tilts, 

including its theoretical schemes, numerical simulation testing and experimental verification. Being inde- 

pendent of specimen thickness and taking specimen drifts into account in measurement, the proposed 

method is supplementary to the existing “rotation center” and “coma-free” alignment procedures. It is 

shown that this method can achieve a rather good accuracy of 94% in measuring small residual beam 

tilts of about 0.1 ° or less. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Recent decades have seen great improvements in 

resolution −down to sub-angstrom −in high-resolution trans- 

mission electron microscopy (HRTEM), owing to implementation 

of aberration correctors and monochromators in the microscopes 

[1–5] . This advance has made it possible to relate the structures 

of various materials to images in a quantitative way [6–11] . 

Nevertheless, more accurate image analysis puts forward higher 

requirements for determination of imaging parameters [9] . Among 

important imaging and diffraction parameters in TEM, a small 

residual electron illumination beam tilt, i.e., deviation from the 

optical axis of the microscope, is almost inevitable to occur even 

after careful alignment during operation. Thus far this has been a 

difficult parameter to measure accurately. 

For aberration-uncorrected TEM, the influence of a beam tilt on 

image contrast of a crystal is more severe than that of a crystal tilt 

of the same magnitude, as previously demonstrated by Smith et al. 

[12] . It has also been known that when a beam tilt occurs in an 

uncorrected TEM, higher order aberrations may appear as lower 

order aberrations and can considerably influence imaging condi- 

tions [13] . For aberration-corrected TEM, a small beam tilt will 

not noticeably affect imaging conditions and can even be used as 

an advantage to compensate for small local crystal tilt [14] , i.e., a 
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beam tilt becomes equivellent to a crystal tilt in this case. Even 

though, it is always best to know the accurate beam tilt values for 

post-factum quantitative image contrast analysis, since more and 

more accurate image simulations are being used to quantitatively 

determine 2D [6,15,16] and 3D structures [8,9] , and even to de- 

termine the atomic-scale compositions of materials [17] . In other 

applications, such as aberration and defocus spread measurement 

and tilt series wavefunction reconstruction, beam tilt is assumed 

to be a known parameter [13,18–20] . In such cases, knowing accu- 

rate residual beam tilt is a plus to achieve accurate interpretation 

of the data. 

Numerical approaches for measuring and correcting beam tilts 

exist [21–32] , and some of their key principles have been applied 

successfully as the standard alignment procedures in the mod- 

ern HRTEM instruments, including “rotation center” alignment and 

“coma-free alignment”. As shown by Typke [22–26] , Koster [27–

30] and other researchers [31,32] , the beam tilt and associated 

aberrations can be related by beam-tilt-induced image displace- 

ment (BTIID) in real space. By observing and measuring the BTI- 

IDs, the related beam tilt can be estimated and therefore corrected. 

The rotation center method is sufficient for low- and medium- 

resolution work [28] , whereas the coma-free method can achieve 

higher precision. The coma-free method [27,28] uses three images 

taken with 3 beam tilts ( −t , 0, t ), where t is an induced beam 

tilt. By comparing the image displacements of image ( t ) and im- 

age ( −t ) with respect to image ( 0 ), the beam misalignment can be 

estimated and corrected. However, both the coma-free and rotation 
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center methods are based on the weak-phase-object approxima- 

tion, i.e., a thin crystalline or amorphous sample is preferred for 

measurement. In addition, for both the two alignment procedures, 

it is assumed that the BTIIDs are much larger than the specimen 

drift induced image displacements (SDIIDs) and therefore the later 

effects are neglected without taking into account. When the beam 

tilt becomes very small (e.g., less than 0.1 °), the BTIIDs can be 

smaller than the SDIIDs that almost always exist in a microscope. 

For these reasons it is not always assured that the beam tilt can be 

diminished completely after the two alignments and small residual 

beam tilts may often exist. Hence, a supplementary method that 

can incorporate the effects of thick samples and specimen drifts is 

needed for accurately measuring the possible small residual beam 

tilts in HRTEM, as its applications become more and more quanti- 

tative. 

In the present study, to accurately measure small residual beam 

tilts in HRTEM, we propose a method supplementing to the ex- 

isting methods. The proposed method uses a data set of through- 

focus (TF) series of HRTEM images taken from a crystalline sam- 

ple without limitation on its thickness, and takes into account the 

effect of specimen drifts. Firstly, it is shown that within the theo- 

retical scheme of this method, in which a proper aperture is em- 

ployed at the back-focal plane of the objective lens when recording 

the TF-series of images, for particularly selected reflections in the 

diffractograms (Fourier transform) of the HRTEM images, a rigor- 

ous linear relations exist without any approximation between their 

phases of the complex functions and the beam tilt. As such, the 

beam tilt values can be estimated from these linear relations. Sec- 

ondly, it is demonstrated that for small tilts the BTIIDs are neg- 

ligibly small as compared with the SDIIDs in this procedure, and 

therefore specimen drifts must be corrected in advance to obtain 

the beam tilt values. Fortunately, the errors in the phases intro- 

duced by correction of the SDIIDs are random errors and counter- 

act each other, whereas the phase increments of the selected re- 

flections are systematically accumulative as the defocus changes. 

Hence, the attempted linear relations for measuring the beam tilt 

can be revealed. At last, using the experimental images in a self- 

validated beam tilt experiment, it is demonstrated that small beam 

tilts can be measured with rather good accuracies by employing 

the proposed method. 

2. Theory and simulation 

2.1. Theoretical scheme 

The transmission cross-correlation coefficient (TCC) theory on 

image formation in HRTEM, which considers not only the interfer- 

ence between the central beam and the diffracted beams, but also 

the interference among diffracted beams [14,33,34] , is an accurate 

theory for describing partially coherent imaging. In the TCC theory, 

the diffractogram or Fourier transform, I ( K ), of a HRTEM image in- 

tensity, i ( R ), where R and K are the two-dimension spatial vectors 

in real space and in reciprocal space, respectively, can be expressed 

as follows: 

I ( K ) = 

∫ 
K ′ 

�( K ) �∗( K 

′ − K ) T ( K 

′ , K 

′ − K ) d 2 K 

′ (1) 

where �( K ) and �∗( K ) are the exit wave function and its con- 

jugate in reciprocal space, respectively, and T ( K 

′ , K 

′ - K ) is the so- 

called transmission cross coefficient (TCC). 

When the illumination beam is not exactly parallel to the opti- 

cal axis, but has a tilt, represented by a vector t in reciprocal space, 

the TCC theory expression for diffractogram I ( K ) can be modified 

as follows [12,35] : 

I ( K ) = 

∫ 
�( K 

′ + t) · �∗( K 

′ − K + t) T ( K 

′ + t, K 

′ − K + t) d 2 K 

′ 

(2) 

with the modified TCC 

T ( K 

′ + t, K 

′ − K + t) 

= P ( K 

′ + t) P ∗( K 

′ − K + t) E α( K 

′ + t, K 

′ − K + t) E δ

× ( K 

′ + t, K 

′ − K + t) (3) 

P ( K ) and P ∗( K ) are the phase transfer function due to the lens 

aberrations and its conjugate, defined as P ( K ) = exp[- i χ ( K )], where 

χ ( K ) is the aberration function of the objective lens given by 

χ(K) = 2 π
(

1 

2 

λ · � f · K 

2 + 

1 

4 

λ3 · Cs · K 

4 
)

(4) 

E δ
(
K 

′ , K 

′ − K 

)
= exp 

{ 

−0 . 5 ( πλδ) 
2 
[ 

K 

′ 2 −
(
K 

′ − K 

)2 
] } 

(5) 

E α
(
K 

′ , K 

′ − K 

)
= exp 

{
−
(
πα

λ

)2 [ 
Cs λ3 K 

′ 3 + � fλK 

′ 

− Cs λ3 
(
K 

′ − K 

)2 − � fλ
(
K 

′ − K 

)] 2 }
(6) 

where �f is the defocus, Cs is the third order spherical aberration, 

and λ is the wave length of the incident electron wave. E α( K ) and 

E δ( K ) are the damping envelope functions due to spatial and tem- 

poral partial coherence, respectively. Here δ is the focal spread dis- 

tribution, α is the half angle of beam convergence [14] . It is noticed 

from Eqs. (5 ∼6) that E α( K 

′ , K 

′ - K ) and E δ( K 

′ , K 

′ - K ) are real numbers 

and can be ignored when considering the phase terms below. 
As seen in Eq. (2) , generally there is no straightforward analyt- 

ical relation between the diffractogram and the imaging parame- 
ters because of the integration operation. Therefore, removing the 
integration operation in Eq. (2) is the key to find an analytical rela- 
tion between beam tilt and diffractogram. This can be realized for 
certain reflections by using an appropriate objective aperture for 
HRTEM imaging. In such an aperture-limited experimental setup, 
the information limit of the diffractogram is set to double that of 
the aperture-limited diffraction pattern, as shown schematically in 

Fig. 1 a and b. In this case, the double- K diffractogram spots can be 
expressed as follows (using 2 K for clarity to describe an outmost 
double- K spot in the diffractogram, where K represents a reflection 

spot within the aperture.): 

I ( 2 K ) = 

∫ 
K ′ 

�( K 

′ + t ) �∗( K 

′ − 2 K + t ) T ( K 

′ + t, K 

′ − 2 K + t ) d 2 K 

′ (7) 

Assuming t is a tilt much smaller than a K in magnitude, the 

integrand function has contributions only when K 

′ = {0, ± K }, be- 

cause of the aperture-limiting setup, i.e., for K 

′ > K , �( K 

′ ) = 0. We 

further have 

I ( 2 K ) = �( t ) �∗( −2 K + t ) T ( t, −2 K + t ) 

+ �( −K + t ) �∗( −3 K + t ) T ( −K + t, −3 K + t ) 

+ �( K + t ) �∗( −K + t ) T ( K + t, −K + t ) 

= �( K + t ) �∗( −K + t ) T ( K + t, −K + t ) (8) 

since also �∗( −2 K + t ) = 0, �∗( −3 K + t ) = 0 due to the aperture- 

limited setup. 

Therefore, for such double- K diffractogram spots Eq. (2) simpli- 

fies as follows. 

I ( 2 K ) = �( K + t ) �∗( −K + t ) T ( K + t, −K + t ) . (9) 

The phase function p ( 2 K ) in these double- K diffractogram spots 
introduced by objective lens aberrations in Eq. (3) can be simpli- 
fied as below. 
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