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a b s t r a c t

Data fusion for rough surface measurement and evaluation was analyzed on simulated datasets, one with
higher density (HD) but lower accuracy and the other with lower density (LD) but higher accuracy.
Experimental verifications were then performed on laser scanning microscopy (LSM) and atomic force
microscopy (AFM) characterizations of surface areal roughness artifacts. The results demonstrated that
the fusion based on Gaussian process models is effective and robust under different measurement biases
and noise strengths. All the amplitude, height distribution, and spatial characteristics of the original
sample structure can be precisely recovered, with better metrological performance than any individual
measurements. As for the influencing factors, the HD noise has a relatively weaker effect as compared
with the LD noise. Furthermore, to enable an accurate fusion, the ratio of LD sampling interval to surface
autocorrelation length should be smaller than a critical threshold. In general, data fusion is capable of
enhancing the nanometrology of rough surfaces by combining efficient LSM measurement and down-
sampled fast AFM scan. The accuracy, resolution, spatial coverage and efficiency can all be significantly
improved. It is thus expected to have potential applications in development of hybrid microscopy and in
surface metrology.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Microscopic rough surface structures are directly related with
various physic-chemical behaviours such as friction, wetting, lu-
brication and wear [1]. To establish internal relationships between
functional performances and roughness parameters and then op-
timize surface textures to enable better usages, quantitative
characterization of surface roughness at the micro- and nano-scale
is of fundamental importance. Many techniques have been avail-
able for surface dimensional nanometrology. Among them, atomic
force microscopy (AFM), laser scanning microscopy (LSM) and
scanning electron microscopy (SEM) are probably the most pop-
ular ones. Calibrated AFM can measure the surface topography of
almost all kinds of specimens with even sub-nanometer resolution
[2]. Despite that, the raster scan of the probe or the sample stage
together with the scanner resonance restrict the data acquisition
efficiency [3]. The scan rate of conventional AFM is usually within
several hertz. Conversely, optical methods such as LSM and light
interference are much more efficient and can easily reach a larger
inspection area. However, the lateral resolution is not as good as
AFM because of the diffraction barrier. In addition, optical bias will
lead to large amounts of image artifacts, which are relevant to
local slope, materials and multiple scattering [4]. These char-
acteristics cause quantitative evaluation rather difficult. SEM

measurement has sufficiently high resolution but requires the
coating of a thin metal film for a non-conductive specimen, which
may induce unwanted changes of the surface structures. Further-
more, roughness evaluation from SEM data needs intricate three-
dimensional (3D) reconstruction procedures [5].

As a result, practical situations that one individual technique
cannot meet all the characterization requirements will be fre-
quently encountered. To elucidate a more comprehensive surface
evaluation, development of hybrid systems, which integrate two
or more microscopes, has emerged as a general trend [6]. Because
of the small dimensions of the sensing probe, AFM can be con-
veniently combined with other microscopes [7]. Several such in-
vestigations have already been advanced to exploit the integra-
tions of AFM and kinds of optical microscopes [8]. The data ac-
quisition by hybrid microscopy can be generally divided into two
categories. In the first category, different information is obtained
by different sensing methods. For instance, AFM was integrated
with stimulated emission depletion microscopy to characterize
topography, elastic and optical contrasts within one fixture of the
specimen [9]. In these applications, measured images were simply
applied with registration and subsequent overlay for apparent
correlation of different measurands [10]. In the other category, the
same geometrical information is acquired by all the sensing
components. Such hybrid measurements are of special interest in
surface dimensional nanometrology. As a typical integration, AFM
was combined with white light interference to provide long-range
global characterizations and high resolution local measurements
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[11]. Usually, the hybrid microscope was operated by first carrying
out a rough examination of the entire area with the optical
method, then followed by a detailed analysis of the region of in-
terest with AFM [12].

To maximize the capability of an integrated system, multiple
datasets from all the sensing components are required to be
merged into a single one, which is expected to have a better
overview of the surface structures. Multi-sensor data fusion is a
well developed yet rapidly expanding approach to meet such a
challenge [13]. However, data fusion for metrological application is
still a newly emerged research area [14]. In literature, many pre-
vious works focused on image stitching to improve the spatial
coverage, and the fusion of multi-focus images was also well es-
tablished to realize a single all-focus image [15]. These investiga-
tions mainly addressed the fusion of cooperative datasets from a
single instrument but different operation conditions [13]. In the
case of an integrated hybrid microscope, datasets with different
resolutions and coordinate systems will be involved. Fusing two-
resolution metrological data is considerably more complicated. For
a better inspection of the geometric quality, Xia et al. proposed a
Bayesian hierarchical model for processing two datasets from co-
ordinate measuring machines with a mechanical probe and an
optical probe, respectively [16]. Similarly, optical measurements of
critical dimensions with the assistance of AFM were demonstrated
to have smaller uncertainties via data fusion [17]. Ramasamy and
Raja compared several weight-based fusion methods on optical
images of structured surfaces [18]. Recently, Colosimo et al. con-
structed the Gaussian process (GP) based data fusion framework
for dimensional and geometric verification [19]. This non-para-
metric approach was validated to be quite effective and promising.
Despite these preliminary progresses, the possibility of data fusion
for better irregular rough surface measurements remains unclear
where the structures are much more complex.

Here, we explore the feasibility of data fusion for improving
rough surface evaluations by fully combining topographic datasets
acquired on the same surface with different microscopes. A gen-
eral situation is considered that the datasets are respectively of a
higher density (HD) but lower accuracy type and a lower density
(LD) but higher accuracy type. Such data features are commonly
encountered in practical hybrid microscopy, for example, which
integrates the optical detection and the AFM measurement. First,
influencing factors including the noise strengths of HD and LD
datasets, and the LD sampling interval were analyzed on nu-
merically generated datasets. Then, experimental verifications
were carried out to ascertain the fusion performances. For de-
monstration, surface areal roughness artifacts with specified sta-
tistical properties and roughness parameters were designed and
fabricated by means of focused ion beam (FIB) technique [20].
After AFM and LSM characterizations of the artifacts, data fusion
was applied on the down-sampled AFM image and the original
LSM image, which respectively serve as the LD dataset and the HD
dataset.

2. Methods

2.1. Rough surface generation

One-dimensional (1D) profiles and two-dimensional (2D) sur-
faces with specified roughness characteristics were generated first.
The 1D profiles were adopted for investigating the influencing
factors and evaluating the fusion performances without loss of
generality. The 2D surfaces were used as design templates for FIB
fabrications of roughness artifacts and subsequent LSM and AFM
characterizations.

In general, the most important roughness properties of a

certain profile or a surface are the autocorrelation function (ACF)
and the height distribution [21]. Here, the ACF is assumed in the
form of exponential decay,
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In the above equation, cp denotes the ACF of the rough profile. τx is
the autocorrelation length defined at the 1/e decay and sp is the
standard deviation of the profile heights. Similarly, the ACF of a 2D
rough surface is expressed as,
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where cs represents the ACF of the rough surface. τx and τy are
respectively the autocorrelation lengths in x-and y-directions. ss is
the standard deviation of the surface heights.

To control the height distributions, parameters such as the
mean, standard deviation, skewness and kurtosis were adopted.
Rough profiles or surfaces satisfying above ACFs and these pre-
assigned statistical quantities were numerically generated using
FFT method [21]. However, the statistical parameters of the si-
mulated rough profiles or surfaces may deviate from the expected
values. For the purpose of improving the accuracy, genetic algo-
rithms were incorporated into the design [22].

2.2. Simulation of measurement datasets

In practical microscopy, the acquired data consist of three
major components including the true topography, the measure-
ment bias and the random noise. For clarity, we start with the case
of 1D rough profiles. Mathematically, the measured topography is
described by,

α βε γ( ) = ^( ) + + + ( )z x z x x 32
0

where the first term ^( )z x is the true topography designed with
specified roughness parameters. The second term αx2 is adopted to
simulate the measurement bias, which is spatially correlated. Be-
cause x is defined in a range centered at 0 here, with this ex-
pression, we simply assume that the measurement is relatively
accurate at the central region whereas larger deviations appear at
the edges. Certainly, other forms can also be applied without any

Fig. 1. Typical designed rough profile, simulated HD and LD datasets and fused
profile.
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