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a b s t r a c t

We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low
energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the
aberration coefficients depend primarily on the difference between the photon energy and the photo-
emission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts
the coefficients by up to 30%. These estimates should allow more precise correction of aberration in
PEEM in experimental situations where the aberration coefficients and precise electron energy dis-
tribution cannot be readily measured.

& 2015 Elsevier B.V. All rights reserved.

Photoemission electron microscopy (PEEM) is an increasingly
effective method for imaging surfaces and surface near-field pro-
cesses in the ultraviolet, visible, and infrared spectral regions
[1–3]. High peak intensity pulsed lasers allow practical imaging of
nonlinear two- and three-photon photoelectron excitations on
femtosecond time scales [4–7]. Moreover, with monochromatic
and coherent light sources, PEEM permits the observation of op-
tical diffraction and interference with high spatial resolution, and
this in turn has opened the way for the quantitative study of
photonic and plasmonic processes in the visible and infrared [8–
14]. These developments make PEEM a powerful tool for the study
of near-field optics, offering both excellent spatial resolution and
ultrafast time resolution.

Spherical and chromatic aberration strongly limit spatial re-
solution in PEEM. Simultaneous correction of spherical and chro-
matic aberration is possible through the use of electrostatic mirrors
[15–19]. However, in PEEM there is currently no direct method to
fully characterize the aberration coefficients, which makes the de-
sign and operation of aberration correcting optics subject to un-
certainty. This situation is qualitatively different from other electron
microscopies, where the electron beam aberration can be quanti-
tatively determined for a given sample to allow subsequent cor-
rection [18,19]. In PEEM the aberration coefficients depend sensi-
tively on the energy distribution of the photoelectrons, which can

have significant width and structure that depends on the difference
between emission threshold energy and photon energy. Here we
present a method for the estimation of spherical and chromatic
aberration coefficients in PEEM from the accelerating potential,
cathode-to-anode distance, and emission energy distribution of the
photoelectrons. Furthermore, we investigate the uncertainty in
these estimates when the precise energy distribution shape is un-
known using simple geometric models motivated by realistic
spectra [20–31].

Spherical and chromatic aberrations in PEEM primarily origi-
nate in the accelerating field and objective lens [32–36]. Here we
consider the aberrations of the accelerating field only. The aber-
ration coefficients of subsequent lenses depend on the lay-out of
the instrument and are comparatively insensitive to the emission
energy maximum and distribution. However, a complete ac-
counting of image aberration requires the magnifications and
aberrations of the objective and other lenses. In particular, the
spherical aberration of the objective lens can be as large as that of
the accelerating field. For the purpose of this paper, the lens
properties can be separately measured or computed, and then
they can be added to the accelerating field aberrations following
the method of Rempfer [33,35,37–39]. This method includes the
effects of the accelerating field anode aperture.

We focus on the emission energy region near threshold, which
is relevant to ultraviolet and multi-photon PEEM. The virtual
specimen position of the accelerating field can be computed from
simple kinematic arguments [33,35]. Retaining only the leading
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order contribution in V V/e a, the virtual specimen is located a dis-
tance

z V V2 1 / cos 1a a e a e( )α= ℓ − ( )

behind the anode, where ℓa is the distance between the sample
plane (cathode) and the anode at potential Va, αe is the photo-
electron emission angle relative to the surface normal, and eVe is
the photoelectron emission energy. The paraxial virtual specimen
position is

z V V2 1 / . 2a a e a,0 ( )= ℓ − ( )

The virtual specimen position varies with electron trajectory angle
and energy. As a result, the image possesses both spherical and
chromatic aberrations.

Chromatic aberration requires careful treatment, so we begin
with the definition of the longitudinal chromatic aberration of the
accelerating field,

z z z V , 3e a a a e,0 ,0 ,0 ( )Δ = − ( )

where za,0 is the mean position of the paraxial virtual specimen.
The mean position is calculated from an energy-weighted average,

z z V V dV , 4a
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where the electron charge e has been dropped for convenience,
Veρ ( ) is the emission energy distribution, and integration is over

the full emission energy spectrum V0, e,max( ]. The energy dis-
tribution is equal-yield normalized such that
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The lowest rank coefficient of chromatic aberration can be defined
by
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where V, e
2α δ( ) represents higher order dependence with angle

and energy.
Next we consider the meaning of Ve in Eq. (6) in order to

derive a simple expression for Cca. Typically, e Ve is taken to be the
mean emission energy, i.e., derived from V V V dVe e e e∫ ρ¯ = ( ) . How-
ever, this interpretation presents some difficulty since
z z Va a e,0 ,0≠ ( ¯ ), i.e., the mean position of the virtual specimen is
not the same as the position for the mean energy. As a result, the
left-hand and right-hand sides of Eq. (6) are equal at slightly dif-
ferent energies. To remedy this discrepancy, we define Ve as the
energy of the mean position. Explicitly, if we equate Eqs. (2) and
(4), we get the expression

V V z1 /2 . 7e a a a,0
2( )〈 〉 = − ℓ ( )

Using this definition, we arrive at the simple and familiar result for
the lowest order coefficient of chromatic aberration [32],

C V V/ . 8ca a a e〈 〉 = − ℓ ( )

Calculations made with this result agree with those using a direct
series expansion of Eq. (6) if and only if Ve is defined by Eq. (7). A
similar approach also yields the mean coefficient of spherical
aberration [32,36],

C V V C/ . 9sa a a e ca〈 〉 = ℓ = − 〈 〉 ( )

Since the expressions for virtual specimen position and the
aberration coefficients vary with emission energy, the mean values
za,0 , Csa , and Cca in general depend on the distribution of
emission energies. Typically, the distribution is assumed to be a
simple step or truncated Gaussian function in electron optics. In
this case, the maximum energy of the distribution
eV nhe,max ν ϕ≈ − largely determines the values of Csa and Cca ,
where ϕ is the photoemission threshold energy, and nhν is the
energy of the n photons required to liberate an electron. The dis-
tribution of real electron emission energies is often complicated,
especially for multi-photon emission. Spectra can exhibit one or
more asymmetrically shaped peaks of varying widths depending
on the photon energy, material and surface conditions [20–31].
Indeed, these deviations are usually considered desirable features
that reveal the internal electronic structure of materials. In these
cases, the shape of the distribution Veρ ( ) is also important since Csa
and Cca are nonlinear with factors of Ve in the denominator.

For our purposes, we make the broad simplification that the
overall distribution can be described as an irregular triangle or
trapezoid as shown in Fig. 1. First, the triangular model is used to
investigate the effects of an asymmetric spectrum as a function of

V V/ 0, 1e e,0 ,maxξ = ∈ ( ), where Ve,0 is the energy at the maximum of
the distribution. Similarly, the symmetric trapezoid model is used
to investigate the effects of distribution width, where 0, 1δ ∈ ( ) is
the relative width of the trapezoid top at maximum emission.
Thus, the triangular distribution ρ▵ with ξ¼0.5 is the same as the
trapezoid distribution ρ□ with δ¼0. The simplicity of these
models offers analytic expressions for the coefficients of spherical
and chromatic aberration of the accelerating field. In particular,
the triangular distribution yields a compact expression for the
mean coefficient of spherical aberration,
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Explicit definitions of the distribution functions and derivations of
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Fig. 1. Simple equal-yield distributions to investigate the effects of asymmetry and
width on the coefficients of spherical and chromatic aberration. The triangle dis-
tribution ρ▵ (solid lines) varies the relative position ξ of the maximum. The sym-
metric trapezoid distribution ρ□ (dashed lines) varies the relative width δ of the
central region. The two distributions are equal when ξ¼0.5 and δ¼0 (solid black
line). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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