
Benchmark test of accelerated multi-slice simulation by GPGPU

Fumio Hosokawa a,n, Takao Shinkawa a, Yoshihiro Arai b, Takumi Sannomiya c

a BioNet Ltd, 2-3-28 Nishikityo, Tachikawa, Tokyo, Japan
b Terabese Ltd, Hane-nishi 3-5-1-102, Okazaki 444-0838 Japan
c Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8503, Japan

a r t i c l e i n f o

Article history:
Received 18 March 2015
Received in revised form
22 June 2015
Accepted 28 June 2015
Available online 2 July 2015

Keywords:
Multi-slice
GPU
Benchmark
Image simulation
TEM
STEM

a b s t r a c t

A fast multi-slice image simulation by parallelized computation using a graphics processing unit (GPU)
has been developed.　The image simulation contains multiple sets of computing steps, such as Fourier
transform and pixel-to-pixel operation. The efficiency of GPU varies depending on the type of calculation.
In the effective case of utilizing GPU, the calculation speed is conducted hundreds of times faster than a
central processing unit (CPU). The benchmark test of parallelized multi-slice was performed, and the
results of contents, such as TEM imaging, STEM imaging and CBD calculation are reported. Some features
of the simulation software are also introduced.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

A general purpose computing on the graphics processing unit
(GPGPU) attracts researcher's attention in many scientific fields to
its marvelous computational capability. A graphics processing unit
(GPU) consists of hundreds of simple cores that calculate the given
tasks in parallel. A GPU has originally been developed to calculate
the three-dimensional graphics in place of a central processing
unit (CPU). Currently, GPU's processing power is getting to be used
for a scientific calculation for the purpose of saving computational
times. When a huge amount of simple calculation is parallelized
and computed by GPU, its calculation speed can be hundreds of
times faster than CPU. However depending on the type of calcu-
lation, each core may need to access data of CPU via various types
of GPU memory multiple times during the calculation. Such
memory accessing often becomes the bottle neck and blocks ac-
celerating the calculation speed. Therefore the efficiency of GPGPU
depends on each type of scientific calculation case by case. The
examples of successful reports about the reduction of computation
time were published [1].

The multi-slice method [2,3] is commonly employed in an
image simulation technique of electron microscopy. At present,
this provides probably the most costless algorithm in regard to the
computational time. As to the microscopy hardware performance,
a transmission electron microscope (TEM) and scanning

transmission electron microscope (STEM) fitted with an aberration
correction devices [4] have reached to the resolution of half an
angstrom [5], revealing the atomic structure of a specimen. In
current microscopy, under the aberration-corrected condition,
image simulation has become more important to confirm that the
images can be taken with microscope properly adjusted to correct
conditions for achieving the specified microscope resolution. In
other words, residual aberrations other than third order spherical
aberrations are must be taken into account in the calculation. In a
multi-slice image simulation, the dynamical diffraction is calcu-
lated using two-dimensional (2D) phase gratings and propagation-
space (i.e. slice-thickness) which divide the specimen at intervals
of several angstroms. The atomic potentials are projected onto
slices and assumed to act as a phase grating for an electron wave
function. To calculate one cycle of wave transmission from one
slice to the next, 2D fast Fourier transform (FFT) is applied twice
(forward and inverse) [6] to reduce the calculation time of the
convolution of the propagation function. With a recent CPU, image
simulation of TEM is reasonably fast to prevent a lot of stress for
the user, since usual multi-slice calculation takes several seconds
up to several tens of seconds. However for STEM image simulation,
calculated image consists of thousands of pixels where each pixel
takes the same calculation time of a single dynamical calculation
of TEM image, and therefore the entire calculation may take sev-
eral tens of minutes.

We had used our own multi-slice software, and for the purpose
of minimizing the calculation time, we have implemented GPGPU
functions to our multi-slice simulation.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ultramic

Ultramicroscopy

http://dx.doi.org/10.1016/j.ultramic.2015.06.018
0304-3991/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: hosokawa@bio-net.co.jp (F. Hosokawa).

Ultramicroscopy 158 (2015) 56–64

www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2015.06.018
http://dx.doi.org/10.1016/j.ultramic.2015.06.018
http://dx.doi.org/10.1016/j.ultramic.2015.06.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.06.018&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2015.06.018&domain=pdf
mailto:hosokawa@bio-net.co.jp
http://dx.doi.org/10.1016/j.ultramic.2015.06.018


In this paper, the benchmark test relative to the original CPU
version and some software features are reported.

2. Method

2.1. Implementation

Our multi-slice simulation had been written in Visual Studio
2010Cþþ (Microsoft), and for the development of GPU functions
CUDA 6.5 (NVIDIA) [7] was used. CUDA codes, that are almost the
same as Cþþ language, can be compiled on the Visual Studio
2010 in a manner similar to the original codes.

2.1.1. General
A GPGPU works most effectively if it is adopted where a huge

number of calculations consume a most of CPU processing time. In
an image simulation, this case typically occurs in the calculation of
crystal structure factors and transmission cross coefficients (TCC)
[8]. For a crystal with a small unit cell, the calculation speed is fast
enough regardless of the used core. However, for more compli-
cated crystals or atomic clusters, GPU significantly accelerates the
process compared to CPU.

The tasks in GPU cores work in parallel under the same in-
struction where the index numbers of “thread” and “block” are
given [7]. Thus each parallel task is characterized by having unique
number(s) in a same instruction. The same instructions which
have unique index numbers, such as iteration numbers in “for
loop” or “do …while loop” in C program, are processed at one time
by many “thread” tasks of GPU. If the iteration count will not be
changed while in loop(s) processing in the original code, it can be
parallelized by replacing iteration numbers (conventionally writ-
ten as i, j, etc.) with index numbers of “thread” and “block”, and
thus we implemented parallelized algorithm in multi-slice simu-
lation. If the iteration count in the loop(s) is a variable, firstly
original code should be modified so that iteration count remains
constant. Before GPU processes the parallel calculation, the cal-
culation data in CPU memory must be transferred to GPU memory,
which is a time consuming process. Therefore frequency of this
data transfer should be minimized for the effective usage of
GPGPU. In the GPGPU programming, reading and writing data
from each “thread” tasks should be designed in some special
manner [1,7]. In particular, it should be done in minimum re-
petitions, and should be in sequential accessing along the local
index, and avoid conflict in case of “shared memory”, otherwise
memory traffic often become a bottleneck of computational time.

2.1.2. FFT
Acceleration of FFT by GPGPU is the main contribution to speed

up of the whole multi-slice algorithm. NVIDIA provides a FFT-li-
brary named cuFFT in CUDA, which uses the interleaved array
format for the numerical complex data in which the real and
imaginary parts are stored alternately. Our CPU multi-slice code
had been developed as a whole part for the use of the split array
where the complex data is stored separately to real array and to
imaginary array. For the effective use of cuFFT, a fairly large
modification is necessary in whole architecture. Therefore at the
first-stage, we developed our own parallelized FFT for GPU to use
the split array. We parallelized our FFT of radix 2 by assigning
vertical numbers of butterfly computation to indices of “threads”,
therefore, FFT of data points N¼2p produces N/2 “threads” and
each “thread” calculate a butterfly computation in a loop of
iteration p which corresponds to horizontal numbers of butterfly
computation.

Before this study, we compared the calculation speed in regard
to the calculation speed of 512�512 FFT and found that cuFFT of

interleaved array is 1.3 times faster than our FFT of split array. We
also tested cuFFT plus data conversion function which is supplied
in CUDA (split array to interleaved array), and found that our FFT is
6.4 times faster than the combination of NVIDIA functions. As a
consequence, we are using our own FFT without modifying the
whole part of our multi-slice code instead of using the cuFFT.

2.1.3. Pixel to pixel operation
A pixel-to-pixel operation can be simply parallelized by repla-

cing the iteration loops (e.g. “for”, “do” etc) with indexed threads
in GPU function. In the image simulation algorithm, there are
many operations similar to pixel-to-pixel operations. For example,
multiplication of electron wave function by phase grating or by
propagation function can be parallelized in such a way. These
calculations are accelerated by GPU although its contribution to
the reduction of total multi-slice calculation time is not dominant.

2.1.4. Crystal structure factor
To calculate the crystal structure factor is the first thing to do in

image simulation. The crystal structure factor is used to get the
projected specimen potential onto the slice. It is necessary to
calculate all the structure factors that have a scattering vector
which is located in a reciprocal plane of the slice plane. This cal-
culation process is similar to that of the cross section of three-
dimensional discrete Fourier transform. For an ordinary crystal cell
that has unit length of several angstroms, the calculation time
needed for the structure factor is small compared to total com-
putational time. As for large super cell that has unit length of
several tens of angstroms, the structure factor calculation takes
noticeably long time in CPU processing and sometimes occupies
most of the calculation time. Parallelization of the calculation of
crystal structure factor tends to be simple like that of pixel to pixel
operation. It can be done by replacing the iteration variables with
index numbers of thread and block in GPU function. The projected
potential is given by Fourier transform of crystal structure factor
which is multiplied by a constant.

2.1.5. Phase grating and propagation function
The phase grating represents a phase shift which is a product of

an “interaction constant” [2] and a projected potential, and the
calculation was done for convenience when the structure factors
were calculated by GPU. The propagation function is calculated in
the reciprocal plane without using GPU. The calculation of pro-
pagation function needs the wavelength of electron, propagation
distance between the entrance slice to the next slice and the
electron incident angle to the entrance slice. In our program, the
propagation distance is kept as the fixed value once one multi-
slice calculation starts to run. The phase grating may be varied in
one calculation depending on the propagation distance whose
value is arbitrarily set at the start of the calculation for a certain
crystal data.

2.1.6. Dynamical diffraction
A dynamical diffraction is calculated using the multi-slice

method, in which an electron wave function is multiplied alter-
nately by phase grating and propagation function, respectively in
the real and reciprocal spaces. These multiplications are repeated
with electron's passage through every slice. The parallelization of
this multiplication can be done in the same manner as described
in Section 2.1.3 (Pixel to pixel operation). The forward and inverse
2D-FFTs are applied to the electron wave function every time be-
fore the multiplication by propagation function and phase grating,
respectively. Thus 2D-FFT operation is executed twice per slice, in
order to perform convolution in the real space. In a dynamical
diffraction calculation with CPU, 2D-FFT is the most massive part
to consume the calculation time. For example, assuming the

F. Hosokawa et al. / Ultramicroscopy 158 (2015) 56–64 57



Download English Version:

https://daneshyari.com/en/article/8038051

Download Persian Version:

https://daneshyari.com/article/8038051

Daneshyari.com

https://daneshyari.com/en/article/8038051
https://daneshyari.com/article/8038051
https://daneshyari.com

