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a b s t r a c t

We describe a fast and accurate method for the reconstruction of macromolecular complexes from a set
of projections. Direct Fourier inversion (in which the Fourier Slice Theorem plays a central role) is a
solution for dealing with this inverse problem. Unfortunately, the set of projections provides a non-
equidistantly sampled version of the macromolecule Fourier transform in the single particle field (and,
therefore, a direct Fourier inversion) may not be an optimal solution. In this paper, we introduce a
gridding-based direct Fourier method for the three-dimensional reconstruction approach that uses a
weighting technique to compute a uniform sampled Fourier transform. Moreover, the contrast transfer
function of the microscope, which is a limiting factor in pursuing a high resolution reconstruction, is
corrected by the algorithm. Parallelization of this algorithm, both on threads and on multiple CPU's,
makes the process of three-dimensional reconstruction even faster. The experimental results show that
our proposed gridding-based direct Fourier reconstruction is slightly more accurate than similar existing
methods and presents a lower computational complexity both in terms of time and memory, thereby
allowing its use on larger volumes. The algorithm is fully implemented in the open-source Xmipp
package and is downloadable from http://xmipp.cnb.csic.es.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Single-Particle Analysis (SPA) is an Electron Microscopy (EM)
method wherein the three-dimensional (3D) structure of a biolo-
gical complex is determined from projections at random orienta-
tions of multiple instances of the specimen. Each projection is a
two-dimensional (2D) projection of the 3D complex with a ran-
dom spatial orientation that is additionally modulated by the
Contrast Transfer Function (CTF) of the microscope. Upon de-
termination of the orientation parameters, an inversion procedure
yields a 3D volume that is compatible with the original projec-
tions. However, noisy imaging conditions, CTF effects, errors in
orientation parameters, and a finite number of discrete projections
not covering the whole spatial domain under study makes this

inversion problem nontrivial [1]. Many approaches have been
proposed to solve this ill-posed inversion, which can be categor-
ized into three classes: algebraic, Weighted Back-Projection (WBP),
and direct Fourier methods.

Algebraic methods treat this inversion problem as a system of
linear equations where well-established algebra methods are
employed to find the solution. In other words, the problem is
formulated as p Wv¯ = ¯ , where the 3D object is decomposed into a
finite set of basis functions whose coefficients are lexicographically
stored in a vector v̄, p̄ is a vector with the values of all of the
projections' pixels, and W encodes the weight of each of the basis
functions onto each pixel. The Algebraic Reconstruction Technique
(ART) [2] and Simultaneous Iterative Reconstruction Technique
(SIRT) [3] are iterative approaches to solve this system of equa-
tions. The general idea behind these methods is to iteratively
improve an initial volume by comparing each of the experimental
projections with the projections from the current volume, thereby
attempting to compensate for this difference. Although algebraic
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methods have the potential to be applied to many different types
of reconstructions [1] and to incorporate a variety of constraints
[4], they suffer from a high computational complexity. In the SPA
field, the introduction of blobs as spherically symmetric basis
functions by [5] was one of the most efficient efforts towards a fast
algebraic reconstruction, but it is still more computationally ex-
pensive compared to the two other aforementioned groups.

WBP [6,7] is the most intuitive method used to reconstruct a
3D object from its 2D projections based on the concept of the
Fourier slice theorem. For a set of projections with known or-
ientations, each projection is back-projected across the objective
volume from its position in the projection space defined by its
orientation. The superposition of all of these back-projections
provides an estimation of the original 3D object. To account for the
angular distribution of projections, these methods use a weighting
function in Fourier space. Weighted back-projection methods are
faster than algebraic methods, but they perform poorly in cases
where large angular gaps exist, and they have been shown to
underperform algebraic methods in a number of cases [5,8].

Based on the central slice theorem, direct Fourier reconstruc-
tion (DFR) methods try to obtain the 3D Fourier transform of an
object directly from the 2D Fourier transform of its projections, so
that an estimation of the original 3D object can be quickly ob-
tained through an inverse 3D Fast Fourier Transform (FFT). In
practice, the irregularity of the spatial distribution of the fre-
quency of samples in the set of projections in experimental SPA
studies makes the direct use of the inverse FFT unfeasible. Thus, an
additional interpolation step is required to obtain the 3D Fourier
transform of the object on a regular grid. The so-called gridding
algorithm is an alternative method introduced by Penczek et al. [9]
into the SPA field; this method was originally developed by Jack-
son et al. [10] to efficiently estimate the 3D Fourier transform in a
regular grid of points using irregularly distributed samples in
Fourier space. This algorithm uses an interpolation kernel; in our
case this kernel is a modified Kaiser-Bessel (MKB) window func-
tion (also known as a blob). The gridding-based direct Fourier
method can yield resolutions higher than the algebraic methods
(and clearly weighted back-projection methods) in a fraction of
their computing time.

Frequency samples from different projections mainly con-
centrate at the center of the 3D frequency domain, and their
sparsity increases as we move away from the center. If no
weighting scheme were employed, samples close to the 3D Fourier
origin would be over-represented with respect to points away
from the origin. In general, the sample values must be corrected by
a weight function before inverting the Fourier transform of the
volume. An accepted method in SPA to perform this weighting task
is to use the volume of the Voronoi region [9] around each Fourier
sample. This region is a polyhedron associated with each sample
such that the distance between this sample and any point in the
polyhedron is shorter than the distance from these points to any of
the remaining samples. However, computing Voronoi cells is time
consuming (particularly for SPA, where the algorithm has to
handle millions of Fourier samples).

An alternate algorithm for obtaining the weighting function
was proposed by Matej and Lewitt [11] for Positron Electron To-
mography (PET). This approach seeks appropriate weights at each
Fourier sample so that it participates with the right weight during
the interpolation of regular points. The algorithm begins with the
initial weights of the samples and uses convolution with a kernel
to iteratively refine these weights. Their proposed method is
practical for PET where the geometry of data is known and the
number of sampling points is not large, but not for SPA where such
conditions are not met.

In this paper, we introduce a gridding-based direct Fourier
three-dimensional reconstruction in SPA following the method

suggested by Matej and Lewitt [11] in PET. Our method follows the
same iterative scheme for computing the weights, but we estimate
the weights at each Fourier sample by evaluating a function in-
stead of storing the collection of weights (which would become
impractical in SPA). The proposed approach follows the general
idea of Scheres [12], but differs in the way that the weights are
calculated. Finally, our algorithm has an additional novel step to
compensate for the trilinear interpolation of weights in Fourier
space (described in Section 2.4), which improves the resolution of
the final reconstruction. The CTF correction is applied during 3D
reconstruction and is crucial for a high-resolution structure
determination.

We compared the proposed reconstruction algorithm with the
algorithms from the SPARX package [13] and the RELION package
[12]. In the method by Zhang et al. [13], the projections are first
padded to 2 times their original size (default value in the im-
plementation), and then the Nearest Neighbor (NN) interpolation
is used to calculate the target 3D Fourier volume. Finally, a
weighting function using Bracewell's “local density” [14] is com-
puted to correct the value for each voxel of the 3D Fourier volume.

The experiments showed that our approach is a superior
method for 3D reconstruction in terms of accuracy, speed, and
memory usage. The new algorithm is fully implemented in the
open-source Xmipp package and is downloadable from http://
xmipp.cnb.csic.es.

2. Material and methods

2.1. Preliminaries

The goal of the gridding-based direct Fourier method is to
approximate frequency samples on a regular 3D Cartesian lattice
F RD3 ( )¯ from the measured samples of the 3D frequency domain

F QD3 ( )^ ¯ as

F R CTF Q F Q K Q dQR , 1D D3
1

3( ) ( ) ( )∫ ¯( ¯) = ¯ ^ ¯ − ¯ ¯
( )

−

where R̄ is the frequency coordinate within the regular 3D grid
and K is the kernel function by which the integration is accom-
plished. We recommend using a kernel function with some ap-
pealing attributes, such as finite size, bell-shaped decay, and dif-
ferentiability at the borders. The modified Kaiser-Bessel (MKB or
blob) is considered to be the best kernel for gridding interpolation
by several authors [10,11,15,16]. Matej and Lewitt [16] generally
assessed the optimal values for the parameters of the MKB to
achieve a reconstruction with good quality. We use an MKB with
the same parameter values suggested in their paper. CTF correc-
tion is incorporated during interpolation by dividing each irregular
sample by CTF Q1( )¯− , where CTF Q( )¯ is the value of the CTF at

frequency Q̄ (as a practical implementation issue, this division is
performed as long as the CTF is above a given threshold).

Under experimental conditions, a limited number of projec-
tions from the specimen are available. Therefore, the discrete form
of the integral in Eq. (1) should be considered because measure-
ments are only available at a finite set of frequencies Q Ri{ }∈ ¯ . To
obtain a discrete form of Eq. (1), the integral is substituted by a
summation as shown

F R CTF F K wR R R R R ,
2

3D
i

1
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( )
−

where w Ri( )¯ is the weighting factor for the i-th irregular sample. It
is important to note that the weighting function is a substitution
for dQ̄ within Eq. (1). In fact, the value of each irregular sample
should be corrected by the weighting factor and the related CTF
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