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a b s t r a c t

The steadily improving experimental possibilities in instrumental resolution as in sensitivity and
quantization of the data recording put increasingly higher demands on the precision of the scattering
factors, which are the key ingredients for electron diffraction or high-resolution imaging simulation. In
the present study, we will systematically investigate the accuracy of fitting of the main parameterizations
of the electron scattering factor for the calculation of electron diffraction intensities. It is shown that the
main parameterizations of the electron scattering factor are consistent to calculate electron diffraction
intensities for thin specimens and low angle scattering. Parameterizations of the electron scattering
factor with the correct asymptotic behavior (Lobato and Dyck [5], Kirkland [4], and Weickenmeier and
Kohl [2]) produce similar results for both the undisplaced lattice model and the frozen phonon model,
except for certain thicknesses and reflections.

& 2015 Published by Elsevier B.V.

1. Introduction

All the existing programs for quantitative simulations of ex-
periments in electron microscopy and electron diffraction require
the input of electron scattering factors for the atoms. In principle,
the simulation programs could use the numerical values for the
scattering factors and interpolate them to obtain the atomic
electrostatic potential or scattering factor at the required points.
But in order to reduce the data and improve the numerical accu-
racy, the electron scattering factors are parameterized by linear
combination of simple basic functions. These parameterizations of
the electron scattering factors are available from several publica-
tions [1–5] and are computed by fitting the scattering factors with
discrete numerical results obtained from accurate ab initio quan-
tum mechanical calculations [1,6,7,4].

Originally the electron scattering factors were parameterized
by using a linear combination of Gaussian functions [8,9,1,3],
which is sufficient for small spatial frequencies but cuts the scat-
tering factors for large scattering angles. Weickenmeier and Kohl
[2] used more complicated functions to fit the electron scattering
factors to achieve a correct asymptotic behavior for large angles.
Kirkland [4] used a combination of Lorentzians and Gaussians to fit
the tabulated electron scattering data. The inclusion of the Lor-
entzians in this parameterization is needed to assure the correct

asymptotic behavior for large angles. Lobato and Van Dyck [5]
parameterized the electron scattering factors by using the analytic
non-relativistic hydrogen electron scattering factors as basis
functions. Moreover, this parameterization includes the correct
physical constraints in the electron scattering factor and its de-
rived quantities such as the x-ray scattering factor, the electron
density distribution and the atomic electrostatic potential.

For simple routine simulations where precision is not so important
most of these parameterizations are sufficiently adequate. However,
the steadily improving experimental possibilities in instrumental re-
solution as in sensitivity and quantization of the data recording put
increasingly higher demands on the precision of the scattering factors.

In the present study, we will systematically investigate the
accuracy of fitting of the main parameterizations of the electron
scattering factor for the calculation of electron diffraction in-
tensities. To achieve this, we start by performing a full comparison
in all ranges between the different parameterizations of the elec-
tron scattering factor and its derived quantities for copper (Z¼29).
After that, we perform accurate multislice calculations of the
electron diffraction patterns of Cu-crystal for a range of thick-
nesses by using the undisplaced lattice and frozen phonon model.
Next, the diffracted intensities as a function of thickness are
compared for both Zero Laue zones (ZOLS) as Higher order Laue
zones (HOLZ) reflections. And finally, the integrated diffuse scat-
tering versus thickness is calculated by using the frozen phonon
model. Comparison of all these results allows us to draw reliable
conclusions about the range of applicability of these
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parameterizations.

2. Parameterizations of the electron scattering factor and its
derived quantities

Let us start with some definitions and formulas, which allow us
to derive different quantities from the electron scattering factors
[4].

For an atom with atomic number Z, the X-ray scattering factor
is related to the electron scattering factor f g( )e via the inverse
Mott–Bethe formula [10,11]

f g Z a g f g( ) 2 ( ), (1)x e
2

0
2π= −

where g is the magnitude of the three-dimensional vector in the
reciprocal space and a0 is the Bohr radius. f g( )e is in units of Å and
f g( )x is a dimensionless quantity corresponding to the distribution
of electrons. For neutral atoms f Z(0)x = . The Mott–Bethe formula
is equivalent to the solution of Poisson's equation in reciprocal
space yielding the potential distribution from the charge
distribution.

The electron charge distribution is related to the X-ray scat-
tering factor by means of its inverse three-dimensional Fourier
transform

fr g g r g( ) ( )exp(2 ) d , (2)x∫ρ π= ·

where r and g are the three-dimensional vector in the real and
reciprocal space, respectively and the integration extends over all
of space.

By definition the atomic electrostatic potential is related to the
electron scattering factor f g( )e by means of the inverse three di-
mensional Fourier transform

fr g g r gV( )
1

( )exp(2 ) d , (3)e∫κ
π= ·

where a e4 /20 0κ πε π= , e is the electron charge, ε0 is the vacuum
permittivity and a0 is the Bohr radius.

If we know the parameterization of the electron scattering
factor, we can use the above definitions and formulas to derive the
X-ray scattering factor, the electron density distribution and the
atomic electrostatic potential.

In Refs. [8,9,1,3] the electron scattering factors were para-
meterized by using a linear combination of Gaussian functions.
Although this parameterization is sufficient for small spatial fre-
quencies, it cuts the scattering factors for large scattering angles,
which is inappropriate for dynamical calculations that involve
large scattering angles or for the proper calculation of the thermal
diffuse scattering (TDS). The most accurate Gaussian para-
meterization is given by Peng et al. [3]. They used five Gaussians to
fit the tabulated electron scattering data and perform a nonlinear
least squares fitting by using simulated annealing (SA) optimiza-
tion [12]. For this parameterization the electron scattering factor
and its derived quantities can be written as
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where ai and bi have units of and 2Å Å , respectively.
Weickenmeier and Kohl [2] used five more complicated func-

tions to fit the electron scattering data to achieve the correct
asymptotic behavior of the electron scattering factors at large va-
lues of g. In this parameterization, the nonlinear minimization
procedure was carried out by using the Levenberg–Marquardt al-
gorithm (LMA) [13]. The drawback of the LMA is that it only finds a
local minimum, which means that the result of fitting parameters
depends sensitively on their initial assigned values. For this
parameterization the electron scattering factor and its derived
quantities can be written as
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1 2˚ Å

−
, respectively.

To obtained the correct asymptotic behavior of the electron
scattering factors at high angles, Kirkland [4] used a combination
of three Lorentzians and three Gaussians to fit the tabulated
electron scattering data. Although Kirkland used LMA for the
nonlinear minimization procedure, his fit was improved by trying
several different starting points and keeping only the best one.
This parameterization allows us to express the electron scattering
factor and its derived quantities as
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