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a b s t r a c t

Intense ongoing research on complex nanomagnetic structures requires a fundamental understanding of
the 3D magnetization and the stray fields around the nano-objects. 3D visualization of such fields offers
the best way to achieve this. Lorentz transmission electron microscopy provides a suitable combination
of high resolution and ability to quantitatively visualize the magnetization vectors using phase retrieval
methods. In this paper, we present a formalism to represent the magnetic phase shift of electrons as a
Radon transform of the magnetic induction of the sample. Using this formalism, we then present the
application of common tomographic methods particularly the iterative methods, to reconstruct the 3D
components of the vector field. We present an analysis of the effect of missing wedge and the limited
angular sampling as well as reconstruction of complex 3D magnetization in a nanowire using simula-
tions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing interest in nanomagnetic structures that
exhibit complex topological spin states. The research is both fun-
damental to understand the underlying spin textures and the
physical phenomena and applied to ensure the stability of the
state and ability to control it. For example, skyrmions exhibit
three-dimensional (3D) variation of spin texture in chiral magnetic
thin films that are stabilized by the Dzyaloshinskii–Moriya inter-
action [1,2]. They are often present at specific points in arrays in an
otherwise uniform magnetization pattern. They are topologically
protected so that they cannot unwind or alter their magnetization
continuously. As a result, they are being studied intensively for
next generation information storage [3]. Towards achieving this
understanding, there is a need to quantitatively map and visualize
the entire 3D magnetization in such materials. Not only is 3D in-
formation necessary but also the ability to map the magnetization
at a high spatial resolution. Lorentz transmission electron micro-
scopy (LTEM) provides an ideal combination of high spatial re-
solution and ability to quantitatively map the magnetization in
nanostructures [4,5].

It has been shown experimentally that combining LTEM with
tomographic methods, it is possible to reconstruct the 3D mag-
netic vector potential of a thin Permalloy (NiFe) islands [6]. The

approach used acquisition of four tilt series about two mutually
orthogonal axes in the plane of the sample. For each axis, two tilt
series were acquired with the sample in as-is orientation and
flipped upside down in order to separate the magnetic component
of the phase shift from the electrostatic component. The magnetic
phase shift tilt series data was then used for reconstructing the
individual vector components using the vectorial filtered back-
projection algorithm [7,8]. Although the reconstruction showed a
correct representation of the spatial variation of the vector com-
ponents, it suffered from the usual artifacts of limited tilt tomo-
graphy, such as blurring, and streaking [9]. Additionally the re-
solution of the components along the z direction is not the same as
that in the x and y directions.

In other tomographic techniques such as X-ray computed to-
mography, the weighted (or filtered) backprojection method is
typically not used or only used as a starting point for the 3D re-
construction. The initial estimate obtained using this method is
then improved using various forms of iterative reconstruction
methods such as algebraic reconstruction technique (ART) or si-
multaneous iterative reconstruction technique (SIRT) [10]. These
methods rely on posing the reconstruction as an inverse problem
and rely on solving a set of equations using linear algebra meth-
ods. In order to be able to do so, a projector matrix needs to be
established that connects the projection data with the data to be
reconstructed.

In this paper, we present a formalism to represent the magnetic
phase shift data as a Radon transform of the magnetic induction
components directly such that we are able to define a projector
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matrix. We will then introduce briefly the four basic reconstruc-
tion methods: (1) Weighted Backprojection Method (WBP),
(2) Regridding reconstruction method (Gridrec), (3) ART, and
(4) SIRT. These methods are commonly available in freeware and
commercial softwares and are used for standard scalar tomo-
graphy [11,12]. These methods are then applied to the re-
construction of vector field components of a uniformly magne-
tized nanosphere since its 3D magnetic field is analytically known.
We perform a detailed analysis of the effect of missing wedge,
effect of limited angular sampling on the reconstructed compo-
nents using the four methods. Finally we show the application of
these methods to reconstruct the complex 3D magnetization in a
magnetic nanowire with circular cross-section.

2. Methods

2.1. Projection equations for 3D vector field reconstruction

In order to perform 3D reconstruction of the vector field
components using various algorithms including iterative methods,
it is essential to establish the correct projection equations i.e.
forward projection and backward projection for the magnetic
phase shift of electrons in terms of the components of magnetic
induction of the sample. The magnetic phase shift of the electrons
in the presence of a vector potential A of the sample can be written
from the Aharonov–Bohm relation as [13]

e
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where r⊥ represents the 2D position vector in the projection plane,
which is perpendicular to the direction of projection given by l,
and A r( ) represents the vector potential. Considering the direction
of projection to be along the z-axis, we have zl ed d z= ^ . Sub-
stituting this into the above equation and simplifying, we get
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Using Eqs. (3) and (4), we get
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The second term of the above equation becomes zero, since the
vector potential is assumed to be zero at infinity. Hence the
equation relating the magnetic phase shift with the magnetic in-
duction can be written as
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Similar equation for the x derivative of the magnetic phase shift
can be derived as
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The above equations are similar to the projection equations of a

scalar quantity. In fact they are the real space representation of the
equations derived previously by Phatak et al. [8]. Considering a tilt
series around the x-axis, for a given value of x, in the y z– plane, the
vector component Bx remains invariant as a function of the tilting
of the sample by θ or equivalently tilting the beam by θ− . Thus the
projection along any line in the (y,z) plane can be parame
terized using the relation y z( ( , ), ( , )) (( cos sin )ρ ξ ρ ξ ρ θ ξ θ= +
,( sin cos ))ρ θ ξ θ− . Here ρ gives the distance of the line from the
origin. This is shown schematically in Fig. 1. Eq. (6) can now be
rewritten for any tilt angle θ about the x-axis as
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If we compare this equation with the definition of Radon trans-
form:

R A s s s( , ) ( cos sin , sin cos ) d , (9)∫θ ρ ρ θ θ ρ θ θ= − +
−∞

∞

we can see that the Radon transform of a 2D slice of Bx in (y,z)
plane for a given value of x gives the respective sinogram at that x
in the projection array. The projections thus obtained are essen-
tially the derivative of the magnetic phase shift with respect to y.
This establishes the forward projection equation that can be used
for computing the projections from the vector field component.
The backward projection equations can then be simply computed
using the inverse Radon transform as

B x y z x y z( , , ) ( , cos sin , ) d . (10)x y m0
∫ ϕ θ θ θ θ= ∇ +

π

From henceforth, the gradient of the phase shift data is referred to
as the projection data. Similar equation for the y component of the
magnetic induction can be derived using Eq. (7) and relating it to
the tilt series about the y-axis as follows:
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∫ ϕ γ γ γ γ= ∇ +

π

where γ is the tilt angle about the y-axis. The third component of
the magnetic induction, Bz, can then be computed using the zero-
divergence condition, B 0∇· = , as
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These relations can now be used in various reconstruction al-
gorithms including iterative methods to reconstruct the 3D

Fig. 1. Schematic figure showing the orientation of projection geometry. The figure
shows the y z– plane at x¼0 and the projection direction dξ at an angle of θ and a
distance ρ from the origin.
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