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a b s t r a c t

It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used
to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The
presence of vortices in these lattices was verified by using a third biprism to perform direct phase
measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electro-
magnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex
position measurements and the interpretation of three-wave vortex lattices in the presence of partial
spatial coherence.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Apart from their intrinsic appeal from a fundamental perspec-
tive, vortical electron wavefields may prove very useful for the
measurement of nanoscale electromagnetic fields. A number of
methods have now been demonstrated for producing vortical
electron wavefields, ranging from holographic masks [1] to optical
aberrations [2,3]. In addition to isolated vortices, methods for
producing both light and electron wavefields containing arrays of
vortices have also been pursued. One possible application of
electron vortex arrays is to use the vortices as fiducial markers
to measure an electromagnetic field via its effect on the phase of
the wavefield. Such approaches, often termed “vortex interfero-
metry”, have been proposed [4] and applied [5,6] in light optics.
Vortex interferometry permits a real-space approach to phase
retrieval [6], and compared to most Fourier-space reconstruction
schemes, has advantages in that it enables a direct measurement
of the unwrapped phase, as well as potentially enabling better
spatial resolution by bypassing the requirement of sideband
separation.

A light or an electron vortex consists of a point at which the
amplitude of the wavefield is zero, and around which the phase of
the wavefield winds by some (non-zero) integer multiple of 2π.
The number of 2π windings, taking into account the sign of the
winding as an anticlockwise path is traversed, determines the
topological charge of the vortex. A vortex lattice is a periodic array
of such vortices. The phenomenon of vortex lattice generation
from the interference of three, or more, coherent, non-coplanar

plane waves has been studied extensively [7–11]. In light optics,
plane waves possessing the required coherence are usually gener-
ated experimentally by amplitude division of laser light in an
interferometer [6,8,12,13], though vortex lattice generation by
wavefront division has also been analyzed [14] and demonstrated
experimentally [15].

In the case of electrons, several methods are available for
generating multiple interfering plane waves and hence vortex
lattices. Perhaps the most obvious of these is amplitude division
via diffraction from a crystal, where vortices can be generated
when the diffracted beams interfere in the image plane [16].
However, to be useful for electromagnetic field measurements,
the generation and interference of the plane waves must be
performed in a highly controllable and repeatable way. This is
unlikely to be achieved using the method just stated. On the other
hand, it can be achieved by wavefront division of the beam using
multiple electron biprisms [17,18]. Such an approach has been
demonstrated recently, where two orthogonal biprisms were used
to generate four-wave interference patterns containing electron
vortices [19]. In fact, similar four-wave interference experiments
were demonstrated and discussed in detail much earlier [18],
though not specifically in relation to vortices.

For four interfering waves, however, the existence of a vortex at
a point of zero intensity is dependent on the relative phases of the
waves, and for certain relative phases non-vortical intensity zeros
are obtained instead [9,19]. Moreover, four-wave vortices can follow
rather complicated paths in three-dimensional space, and they can
exhibit vortex creation and annihilation [9], meaning that the
vortices can be present at some positions along the optic axis,
and not others. However, most importantly, four-wave vortices are
unstable with respect to a perturbation in the phase of one of the
waves, an aspect that was also emphasized in the work of Eastwood
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et al. [6]. Hence, the use of four interfering waves is ill-suited to
vortex interferometry.

Three-wave vortex lattices, on the other hand, are considerably
simpler, though to the best of the authors' knowledge, this is the
first work to consider them for electrons. An intensity zero
produced by three interfering plane waves is guaranteed to
contain a vortex. Under free-space propagation, three-wave vor-
tices trace out straight parallel lines, and they do not exhibit
creation or annihilation [7,9]. They are also stable with respect to a
phase perturbation in one of the waves [6]. A three-wave vortex
lattice is also robust with respect to coherent lens aberrations,
which merely cause a rigid displacement of the lattice. Hence the
conditions for three-wave vortices are considerably more relaxed,
potentially enabling them to be used more effectively for electro-
magnetic field measurements via electron vortex interferometry.

The present work demonstrates the generation and phase
measurement of three-wave electron vortex lattices using a
transmission electron microscope (TEM) equipped with three
electron biprisms. Two biprisms are used to create a three-wave
lattice. However, as with all vortex lattices, the interference
patterns, taken alone, contain an ambiguity: there exist two lattice
configurations, of opposite topological charges, that have identical
interference patterns [20]. To prove unequivocally the existence of
vortices, and to resolve the topological charge ambiguity, a phase
measurement scheme is required. In this work, a third biprism is
therefore used to perform a phase measurement of the vortex
lattice, including the topological charge, by means of off-axis
electron holography. It is shown that this approach enables a
relatively simple generation and measurement scheme for three-
wave electron vortex lattices.

2. Theoretical background

This section briefly reviews the theory of three-wave vortex
lattices. Consider the electron wave function resulting from the
coherent superposition of three, non-coplanar plane waves, which
for the moment are assumed to be of unit amplitude:

ψ ðxÞ ¼ e2πika �xþe2πikb�xþe2πikc �x; ð1Þ
where x is a three-dimensional position vector, and ka, kb, kc are
the wave vectors. A coordinate system is chosen such that the z
axis, the optic axis, is normal to the plane defined by the tips of the
vectors ka, kb, kc. In this coordinate system, the three wave vectors
have a common z component kz, and the wave function can be
written in the form

ψ ðx; zÞ ¼ e2πikzzðe2πika �xþe2πikb�xþe2πikc �xÞ; ð2Þ
where bold symbols denote two-dimensional vectors lying trans-
verse to the optic axis. Factoring out one of the plane waves, plane
wave C, say, the wave function can be written in the form

ψ ðx; zÞ ¼ e2πikc �xe2πikzzð1þe2πikac �xþe2πikbc �xÞ; ð3Þ
where kac ¼ ka�kc and kbc ¼ kb�kc.

The existence of a vortex requires that the absolute value of the
wave function vanishes at the vortex position (since the phase at
that position is undefined). This demands that the three terms
contained in the parentheses in Eq. (3) sum to zero. Pictorially, if
each of these three terms is drawn as a phasor in the complex
plane, the phasors must form a closed triangle. A closed triangle
can actually be formed in two distinct ways, giving rise to vortices
and antivortices, respectively, as shown schematically in Fig. 1a.
Hence vortices and antivortices correspond to the phase condi-
tions

kac � x7
mn ¼m71

3 ; kbc � x7
mn ¼ n81

3 ; ð4Þ

where m and n are integers, and the upper and lower signs apply
to vortices and antivortices, respectively. By defining the vectors a
and b to be the duals of kac and kbc , the vortex and antivortex
positions are given by x7

mn ¼ ðm71=3Þaþðn81=3Þb, where the
different values of m and n give rise to a periodic vortex lattice in
two dimensions. It is noted the vortex positions are independent
of z. Hence, in three-dimensional space each vortex will trace out a
line parallel to the optic axis as it was defined above.

The fact that, under the stated conditions, a point of vanishing
absolute value must contain a vortex (or antivortex) is demon-
strated pictorially in Fig. 1b. There we see that the resultant of the
three-phasor sum necessarily acquires a phase of þ2π (or �2π for
an antivortex) as an anticlockwise path is traversed in the
immediate neighborhood of the point in question. Note that the

Fig. 1. Schematic representation of a three-wave vortex lattice. (a) The wave
function in a plane perpendicular to the optic axis (as defined in the text). Vortices
and antivortices (red and blue dots, respectively) exist wherever the three phasors
form a closed triangle in the complex plane. The lattice vectors a and b are the
duals of the transverse wave vectors kac and kbc , respectively. (b) The evolution of
the phasor sum as an anticlockwise path is traversed around a vortex. The phasor
sum (black arrow) is seen to acquire a phase of þ2π. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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