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a b s t r a c t

A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an
electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic
mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the
Laplace equation to second order in the variables perpendicular to and along the mirror's radius
(z2�r2=2) to which we add a quartic term (kλz4). The analytical solution is found in terms of Jacobi
cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more
sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the
hyperbolic profile.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In 1990 Gertrude F. Rempfer [1] built on the research of those
such as Zworykin et al. [2] and Ramberg [3] to lay the theoretical
foundations for the hyperbolic electron mirror as a means to
counter the spherical and chromatic aberrations of electron lenses
since aberrations in the former are of opposite sign to those in the
latter. A number of other researchers have also employed such
mirrors [4–8].

In order to gain more flexibility in the ratio of these two
aberrations Shao and Wu [9] designed a four-element mirror
whose outer elements are not hyperbolic. Likewise, Fitzgerald,
Word, and Könenkamp [10] extended Rempfer's diode hyperbolic
electron mirror to include a third hyperbolic electrode that
provides more flexibility in the choice of potentials to better
match spherical and chromatic aberrations and allow for different
magnifications.

The present paper returns to the diode case to examine the
utility of a mirror whose profile deviates from a hyperbolic surface,
either more concave or more convex, in order to better describe
the equipotentials that result from the finite radii of real mirrors.
As an added benefit, we find that mirrors that are more concave
than the hyperbolic profile can provide aberration corrections that
are more stable against fluctuations in the applied electric field.
Given that voltages inevitably fluctuate, this robustness will likely
improve the resolution of images.

2. Theoretical model of a quartic diode mirror

Our approach to the more general class of mirror profiles
closely tracks the case of the hyperbolic diode mirror [1]. At each
step we reduce the extended results to the known hyperbolic
profile that Rempfer found.

The one exception to that flow is to bypass the derivation of
solutions to Laplace's equation for the potential in cylindrical coordi-
nates in terms of the axial potential V(z) near the axis that Rempfer
[1] and Shao andWu [9] use. Instead we simply write down the most
general solution [11] in terms of the radial r, axial z, and rotational ϕ
variables, as well as the coordinate-separation constants β and m.
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(Here the stacked brackets are shorthand for the sum of eight
possible products of three factors.) For rotationally symmetric
solutions, m� 0. Since we will place an electrode at some finite
potential passing through z¼0, as in Fig. 1, we exclude the Bessel
function of the second kind, Y0ðβrÞ, that diverges there. Finally, for V
nonzero at the origin (since we wish to reverse the path of electrons
with a positively-charged electrode at the origin) we have the
symmetric sum of exponentials,

Vðr; zÞ ¼ VM coshðβzÞJ0ðβrÞ: ð2Þ

The functions cosh and J0 can each be replaced with a series
representation,
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where we have subtracted the particular solution V0 ¼ VM – the
potential at the origin – from both sides and where k¼ ðβ2

=2ÞVM .
The first term in the last expression is the potential between the
electrodes in a rotationally symmetric hyperboloid field, the same
arrived at via expansion of V in a conventional power series in r
[12]. An analytic solution for the trajectory of an electron in this
potential exists, from which the paraxial object/image distance
and chromatic and spherical aberration coefficients have been
derived [1].

Since r is generally close to the axis, the next term in the last
expression, proportional to ðk2=2VMÞz4=3, is the next largest
contributor. We here undertake to find the analytical solution for
electron trajectories in a potential containing this term, too.

The present problem, then, is to find the equations of motion
for an electron in such a potential and to solve these equations for
the position of the electron as a function of time. Fig. 1a shows a
cross section of a pair of equipotential surfaces for the hyperbolic
case (dashed lines) and the flaring of such equipotentials outward
from the horizontal axis with the introduction of the quartic term
ðk2=2VMÞz4=3 in the potential (solid lines).

If, on the other hand, we change the sign of that quartic term,
the equipotential surfaces will contract inward toward the hor-
izontal axis as in Fig. 1b. Fig. 1b shows an equipotential labeled VA

that is the physical conformation of a grounded electrode in a
physical mirror, one containing a small aperture to let electrons
pass through from the right. The equipotential labeled VM would
also be the conformation of a physical electrode held at a negative
voltage to stop the electron at equipotential VC (which is not a
physical electrode) and reverse its course.

One would suppose that this inward contraction seen in Fig. 1b
would tend to more strongly focus the electron in its return trajectory,
while an equivalent mirror based on the outward flaring of Fig. 1a
would tend to reduce the focusing of the mirror. Our goal in the next
section is to turn these suppositions into precise analytical trajectories.

2.1. Electron trajectories in a quartic field, general solution

The equations of motion we need to solve, for an electron in a
quartic potential field, are

d2r

dt2
¼ e
m
∂V
∂r

¼ �ek
m
r¼ �ω2r; ð4aÞ
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dt2
¼ e
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¼ 2ω2zþ2ω4μz3; ð4bÞ

where e and m are the charge and mass of an electron and
ω¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ek=m

p
. In the following μ¼m=ð3eVMÞ will be used as a

quartic perturbation parameter that may be set to 0 to recover
the hyperbolic case in the expressions below.

Although Eq. (4b) is a nonlinear second-order differential
equation, we suspected that it might be solved using Jacobi elliptic
functions [13], since the Jacobi cosine-amplitude cnðujκÞ, for
instance, is a solution [14] to the differential equation

d2y

dt2
¼ ð2�k2Þy�2y3: ð5Þ

Under that supposition the solution would be of the form

zðtÞ ¼ A cnðBð
ffiffiffi
2

p
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where the parameters A, B, ψ, and κ will be determined to satisfy
Eq. (4b). The derivative is
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which is expressed in terms of Jacobi delta-amplitude dnðujκÞ and
sine-amplitude snðujκÞ functions. We assert the boundary condi-
tion that the electron location at t¼0 is at the potential surface
where _z and _r are both zero, the point of furthest penetration into
the quartic field (VC in Fig. 1b).

At this point the incident and return electron trajectories are
perpendicular to the reflecting potential surface. Since snð0jκÞ ¼ 0,
[15] then _zð0Þ ¼ 0 requires ψ � 0.

Fig. 1. Theoretical model of the quartic diode electron mirror. Dashed lines are the potential surfaces for the hyperbolic mirror profile, having cylindrical symmetry about the
z-axis with z¼0 at the cone vertex. (a) Solid lines show the deviation of two quartic potential surfaces to a profile more convex than the hyperbolic case, like the bell of a
trumpet. (b) Solid lines show the deviation of the quartic diode mirror to a profile more concave than the hyperbolic diode mirror, like a tulip blossom. The voltages VM and
VA are on the mirror and terminating (here, grounded) electrodes, respectively. The distance from the vertex to the opening of the aperture is the mirror length ℓ, which we
note has a larger value of z than in the hyperbolic diode mirror. A small aperture in the terminating electrode allows electron to enter and exit the mirror field.
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