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a b s t r a c t

Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps
reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The
investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three-
dimensional strain field within the thin TEM lamella is modelled by the finite element method. The
observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal
by a weighting function determined from a recently developed analytical two-beam dynamical theory,
and by simply taking the average value. We demonstrate that the experimental results need to be
understood in terms of the dynamical theory and good agreement is found between the experimental
and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision
in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations
in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dark-field electron holography (DFEH) has emerged as a power-
ful tool for mapping strain at the nanoscale by measuring the
geometric phase of diffracted beams [1,2]. The technique has been
applied to the study of a variety of semiconductor nanostructures,
ranging from strained-silicon devices to multilayers and quantum
dots [3–11]. One of the underlying assumptions in these studies was
that the strain field observed in projection is a linear average of the
strain over the thickness of the foil that the electron beam traverses.
However, the 2-beam diffraction conditions predominantly used for
obtaining dark-field holograms are inherently dynamical. In a
previous paper, we explored how, within dynamical 2-beam theory,
the geometric phase propagates through a varying strain field [12].
The result of the dynamical theory is surprisingly simple in this
case: the projected in-plane strain is an integral of the strain at
different depths in the foil multiplied by a weighting function. This
function takes a simple analytical form depending on the diffraction
conditions and crystal parameters (extinction distance, deviation
parameter and foil thickness).

In this paper, using DFEH experiments and finite element
method modelling, we provide evidence for the validity of the
“weighting function” theory applied to a strained sample with a
well-characterized 3D deformation field. The studied structure
consists of a {Si0.8Ge0.2/Si} superlattice epitaxially grown on a
(001)-Si substrate. For a Si1�xGex alloy with germanium atoms
incorporated substitutionally, the lattice parameter is larger than
that in silicon. Thus, the substrate compressively strains the lattice
in the SiGe layers. Consequently, the SiGe layers are pseudo-
morphic to the substrate (i.e. not subjected to a plastic relaxation)
and have in-plane lattice parameter equal to that of Si and
increased lattice parameter in the growth direction due to Poisson
reaction. However, DFEH measurements are carried out at a
lamella prepared from the bulk structure. There, the thin-film
relaxation process taking place in a strained structure induces a
two-dimensional strain distribution varying along the growth and
perpendicular to the lamella surface directions [13]. Such thin-foil
relaxation effects have been studied in detail in systems similar to
the present work by Convergent Beam Electron Diffraction (CBED)
[14,15] and Geometric Phase Analysis (GPA) of HRTEM images
[16,17] combined with strain modelling by the Finite Element
Method (FEM). Consequently, we also employ FEM modelling
incorporating foil parameters, elastic and compositional properties
of the SiGe and Si layers in order to obtain the strain distribution
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within the TEM lamella for comparison with the experimental
results.

The organization of the paper is as follows. In Section 2, we will
briefly introduce the 2-beam dynamical scattering theory predict-
ing the geometric phase propagation through a sample [12] in a
traditional notation [18]. Section 3 contains the description of the
sample preparation, DFEH experiments and FEM modelling.
Experimental results will be presented in Section 4. The compar-
ison between the results obtained experimentally and the ones
obtained by application of the “weighting function” theory to a
FEM model will be presented in Section 5.

2. 2-Beam scattering theory

The phase of a diffracted beam (characterized by a diffraction
vector g) can be described as the sum of four components [2]

ϕgðrÞ ¼ ϕG
g ðrÞþϕC

g ðrÞþϕM
g ðrÞþϕE

gðrÞ ð1Þ

where G refers to the geometric phase, C the crystalline lattice, M
the magnetic contributions, and E the contributions from electric
fields. The dynamic scattering theory that we have developed
covers the geometric and crystalline phase components [12]. For
materials of different compositions, the phase of a diffracted beam
will contain an additional term of the electrostatic phase, which
depends exclusively on the mean-inner potential (MIP) of the
material the e-beam passes through

ϕMIPðxÞ ¼ CE

Z t

0
V0ðx; zÞdz ð2Þ

To calculate the projected geometric phase from its z (sample
depth)-dependent components we have combined the 2-beam
dynamical scattering theory with a perturbation expansion [12].
For this, we have introduced an additional “z” dependent geo-
metric phase factor e2iπg UuðzÞ in the 2-beam Howie–Whelan (HW)
equations of the Fourier components of the potential as shown in
the following:

dψ0ðzÞ
dz

¼ iπ
eiθ� g

ξ�g
e2iπg UuðzÞψgðzÞ

dψgðzÞ
dz

�2iπsgψgðzÞ ¼ iπ
eiθg

ξg
e�2iπg UuðzÞψ0ðzÞ ð3Þ

where ψ0 and ψg respectively correspond to the transmitted and
diffracted wave functions, z to the coordinate parallel to the optical
axis, uðzÞ to the displacement field, ξg to the dynamical extinction
distance associated to the diffracted beam g, sg to the excitation
vector linked to the Bragg angle deviation and θg to the phase
factor of the Fourier coefficient of the electrostatic potential [18].

Within the validity of the 2-beam approximation, the column
approximation, small displacement variation ðduðzÞ=dzÞ⪡1 and
neglecting the absorption effect, these coupled equations have
been solved by terminating the von-Neumann expansion to the
first order yielding a rather simple expression for the recon-
structed geometric phase [12]

ϕg ¼ �2π
Z t

0
ℜff guðzÞggUuðzÞdz ð4Þ

where “t” is the crystalline sample thickness, ℜ the real part and
f guðzÞ a weighting function for the displacement projection

f guðz; tÞ ¼
iπðsgþð1=ξef fg ÞÞeiπððt�2zÞ=ξef fg Þ � iπðsg�ð1=ξef fg ÞÞe� iπððt�2zÞ=ξef fg Þ

eiπðt=ξ
ef f
g Þ �e� iπðt=ξef fg Þ

ð5Þ

with ξef fg the effective extinction distance including the deviation
from the exact Bragg position

1
ξef fg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2gþ

1
ξg

2

s
ð6Þ

Since absorption can be neglected in this case, we will only use
the real part of the weighting function with the following
analytical form:

ℜ f guðzÞ
� �¼ π

ξef fg

cos ðπððt=ξef fg Þ�2ðz=ξef fg ÞÞÞ
sin ðπðt=ξef fg ÞÞ

ð7Þ

The weighting function depends notably on the effective
extinction distance, which is directly linked to the choice of the
diffracted beam g, deviation parameter and crystalline thickness of
the sample. In fact, the weighting function depends on the scaled
thickness, defined as a fraction of the effective extinction distance,
t=ξef fg .

The interpretation of the reconstructed geometric phase is then
as follows: the weighted integral is a linear projection rule for the
full geometric phase field along the electron beam. The phase of
the diffracted beam at the exit surface corresponds to the sum of
the geometric phases coming from the different depths in the foil,
z, multiplied by the weighting factor. This projection can be
applied to all values linearly depending on the reconstructed
phase such as the in-plane strain field (described by the strain
components εxx, εyy, εxy, and rigid-body displacement ωxy).

A general feature of the weighting function is thatZ t

0
f guðzÞdz¼ 1 ð8Þ

Therefore, in case of a constant displacement field along z:
uðzÞ ¼ u, the normalization of the weighting function restores the
currently used expression of the 2D reconstructed geometric
phase: ϕg ¼ �2πgUu.

Finally, the phase of the diffracted beam at the exit surface of
the sample will be given by

ϕg ¼ θgþπsgtþCE

Z t

0
V0ðyÞdz�2π

Z t

0
f guðzÞgUuðzÞdz ð9Þ

If both reference and strained areas of the sample have similar
thickness, composition and crystalline orientation, then the phase
difference between the reference and strained areas will be
determined by the latter, geometric phase, term. In Section 5.1.,
we will explore the validity of this assumption for the case
examined in this paper.

Table 1 gives the extinction distances and the scaled thickness
of three different diffracted beams 111, 004 and 008 of Si which are
present in the ½110� zone axis and will be experimentally studied
in this paper, employing 200 kV accelerating voltage and a
120 nm-thick lamella. It is worth noting that the most dynamic
111 diffracted beams have a short extinction distance related to
sample thicknesses used in electron holography and typically
deviate from true 2-beams conditions. This has to be considered

Table 1
Extinction distance ξg and ratio t/ξg for a 120 nm thick Si sample and an
acceleration voltage 200 kV associated to 111, 004 and 008 diffracted beams.

Diffracted beam 111 004 008
ξg 79.4 nm 163.8 nm 540 nm
t/ξg 1.51 0.74 0.22
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