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a b s t r a c t

Tomographic techniques play a crucial role in imaging methods such as transmission electron
microscopy (TEM) due to their unique capabilities to reconstruct three-dimensional object information.
However, the accuracy of the two standard tomographic reconstruction techniques, the weighted back-
projection (W-BP) and the simultaneous iterative reconstruction technique (SIRT) is reduced under
common experimental restrictions, such as limited tilt range or noise. We demonstrate that the
combination of W-BP and SIRT leads to an improved tomographic reconstruction technique: the
weighted SIRT. Convergence, resolution and reconstruction error of the W-SIRT are analyzed by a
detailed analytical, numerical, and experimental comparison with established methods. Our reconstruc-
tion technique is not restricted to TEM tomography but can be applied to all problems sharing single axis
imaging geometry.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Electron tomography (ET) provides an unique access to the
three-dimensional (3D) structural, chemical or electrical proper-
ties of organic and inorganic materials with nanometer resolution
[1–3]. For example, ET significantly contributes to the understand-
ing of the prokaryotic ultrastructure [4,5] as well as complex
catalysts [6], polymers [7], and semiconductor nanostructures [8].

ET basically includes three steps: First, the acquisition of a tilt
series in the transmission electron microscope (TEM), i.e., a series
of 2D electron micrographs (projections) while tilting the speci-
men under the electron beam typically within ca. 7701 at
increments of 1–31. Second, the alignment of the tilt series for
corrections of residual displacements between the projections
with respect to a common tilt axis; and third, the computerized
3D reconstruction of the tilt series by specific reconstruction
techniques yielding finally the electron tomogram.

The most notable experimental limitation of the technique is
an incomplete tilt range (for example 7701 instead of 7901),
which leads to a loss of information, visible as “missing wedge” in
the Fourier transform (FT) of the tomogram. In real space, this
corresponds to a reduced resolution in the tomogram in the
direction of the missing wedge. Therefore, considerable effort is
put into the development of adapted specimen geometries (e.g.
needles [9]), holder designs (e.g. On-Axis Rotation Tomography

Holder), and novel goniometers (e.g. TEAMstage [10]) facilitating
at 1801 tilt series acquisition. Accurate and stable rotation holders
also reduce spurious drift of the sample which eases the require-
ments to the alignment procedure following the acquisition.
Nonetheless, small alignment variations as well as detection noise
and specimen damages cannot be completely avoided and impose
a second important limitation, in particular when aiming for high-
resolution tomograms. It is one important task of the reconstruc-
tion procedures to suppress the influence of these “non-projec-
tive” artifacts. This can be achieved by exploring additional
information on the sample structure such as symmetries and by
regularizing the reconstruction.

Nowadays, the tomographic reconstruction is usually per-
formed either with the help of weighted back-projection (W-BP)
methods [11–14] or iterative techniques, in particular the simulta-
neous iterative reconstruction technique (SIRT) [15,16]. Iterative
methods are also often referred to as algebraic reconstruction
techniques (ART) [17]. Numerous variations of these techniques
have been developed in order to consider the above mentioned
limitations: For example, the so-called Discrete ART (DART) [18]
discretizes the range of the allowed reconstructions and can
therefore robustly reconstruct samples that consist of only a few
different materials (grey levels). More recently, another ART has
been introduced which assumes a certain smoothness of the 3D
data using compressive sensing [19].

In general, the mathematical structure of the projection–
reconstruction corresponds to a matrix inversion, which usually
only exists as a pseudoinverse [20]. This pseudoinverse is typically
(mildly) ill conditioned (e.g. due to the missing wedge) and has to
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be regularized in order to be robust against the “non-projective”
errors such as noise [20]. Such a regularization can be achieved by
adding auxillary conditions weighted by a regularization parameter.
Examples of such conditions are euclidean norm minimization
(Tikhonov regularization, e.g. [21]), total variation minimization
(TVM) [19] or basis function number minimization (compressive
sensing) [22]. The iterative reconstruction techniques considered in
the following utilize some sort of Tikhonov regularization where the
regularization parameter is the number of iterations.

Here, we present a reconstruction algorithm that we refer to as
Weighted SIRT (W-SIRT) because it is a combination of W-BP and
SIRT. The combination of these two established methods (intro-
duced in Section 2) and the advantage of a specific weighting filter
(explained in Section 3.1) yield tomograms with higher signal
fidelity and lateral resolution than those obtained from W-BP or
SIRT. This is supported by comparing the results and the conver-
gence behavior of W-SIRT or SIRT obtained from theoretical case
studies (Section 4) and experimental examples (Section 5).

2. Two-dimensional weighted back-projection and SIRT

2.1. Radon transformation

If the tilt series is recorded at single axis geometry (one alternative
is conical tilt geometry [23]), the description of the projection–
reconstruction problem of a 3D (scalar) function f ðx; y; zÞ can be
reduced to 2D by a separate treatment of slices f ðx; y¼ const:; zÞ
perpendicular to the tilt axis y (see Fig. 1). The process of projecting
f ðx; zÞ along lines L determined by a tilt angle α and the distance to the
origin l, i.e.

f̂ ðl; αÞ ¼
Z
L
f ðx; zÞ ds; ð1Þ

is referred to as Radon transformation R [24], whose discrete result is
also called sinogram. Thus, the tomographic reconstruction of a
sinogram (y-slice through the tilt series) can be described mathema-
tically as the inverse 2D Radon transformation ðR�1Þ. Therefore,
algorithms for tomographic reconstruction optimally should be
numerical realizations of R�1.

2.2. Weighted back-projection

The W-BP is based on the simple or direct back-projection
(S-BP) algorithm [4,16]. As the name back-projection suggests,
each pixel of the sinogram is projected back into 2D space along

the ray path, which contributed to the pixel during the projection
process. The superposition of all back-projected paths yields the
layergram (Fig. 1c), which reads in the continuous case [25]

f bðx; zÞ ¼ ð2πÞ�1
Z

f̂ ðnðαÞ � ðx; zÞT ; αÞ dα ð2Þ

with nðαÞ ¼ ð cos α; sin αÞT .
The layergram is only a blurred version of the desired object

function f. It can be abbreviated by

f bðx; zÞ ¼RT ff̂ ðl; αÞg ð3Þ
with the transpose or adjoint Radon transformation RT . However,
the object function (tomogram) is computed by inverse Radon
transformation by

f ðx; zÞ ¼R�1ff̂ ðl; αÞg: ð4Þ
The reason for the difference between f b and f, i.e. the blurring, can
be understood from the projection-slice (or central slice) theorem,
which states (for 2D) that the 1D projection of a 2D object
corresponds in Fourier space to a 1D slice (line) through the origin
(center) of the Fourier transform ðF Þ of the 2D object. Thus, the
S-BP corresponds to a summation (integration) of central slices in
Fourier space. This in turn means an inhomogeneous sampling
decreasing from lower to higher spatial frequencies, which can be
described by a transfer function (TF) for S-BP [14]. Consequently,
the modulation of spatial frequencies g¼ ðgx; gzÞ in the Fourier
transform of the layergram Fbðgx; gzÞ ¼F ff bðx; zÞg can be corrected
by multiplication with a weighting function WðgÞ, the inverse of
the TF. This is the concept of the Weighted BP (W-BP) which finally
retrieves the object function by

f ðx; zÞ ¼F�1fF ff bðx; zÞg �Wðgx; gzÞg: ð5Þ
In the continuous (analytical) case, i.e. infinitesimally small tilt
increments and a tilt range of 7901, the transfer function of the
S-BP is the reciprocal modulus of the spatial frequency. Thus, the
weighting function or the so-called analyticalweighting filter (WF) is

Waðgx; gzÞ ¼ jgj: ð6Þ
Indeed the analytical WF is the 2D Jacobian for the Cartesian to polar
coordinate transformation which is, however, missing if considering
the S-BP (Eq. (2)) in Fourier space. However, in realistic cases,
including possibly non-uniform tilt increments of about 21 and tilt
ranges of about 7701, the transfer function is neither axially
symmetric nor its slope in radial direction is unity. To consider
the limited and discrete number of projections better than the
analytical WF, Harauz and van Heel introduced a so-called exact

Fig. 1. Tomography in single-axis tilt geometry. (a) Schematic of the tilt series acquisition (projection) process. The tilt axis points in y-direction. The green arrow in the 2D
projection corresponds to the 1D projection of the 2D object slice at a certain tilt angle α as shown in (b). (c) The sinogram is composed of all available 1D projections through
the 2D object slice under different tilt angles. Its back-projection leads to the layergram, a blurred version of the original 2D object slice. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this article.)
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