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a b s t r a c t

Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields
of view. Here we investigate the details of the lattice strain–reconstructed phase relationship by applying
dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection
rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D
strained materials. They are used in the following to quantify the influence of various experimental
parameters like strain magnitude, specimen thickness, excitation error and surface relaxation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dark-field electron holography (DFEH) is a recently developed
technique for measuring strain in nanostructures, in particular
over wide fields of view [1,2]. It has been applied to the study of
strained-silicon transistors [3–5] and epitaxial thin films [6,7].
Different aspects of the technique itself have been investigated
over this period. Precision has been studied as a function of
experimental parameters such as exposure time, biprism voltage
and sample thickness [8,9]. The methodology has been extended
to correct for thickness variations by taking conjugate bright-field
electron holograms [2]. The range of imaging conditions, notably
magnification and spatial resolution, has been enlarged by adjust-
ing lens configurations [10,11]. However, one particular basic
assumption remains unchallenged.

The current assumption when using DFEH is that either (a) the
strain is uniform over the thickness of the foil, or that (b) the
measured strain corresponds to the average strain over the
thickness of the foil. Whilst the former poses no problems within
the other assumptions of the method such as the column approx-
imation, such specimens do not exist in practice. Any specimen

that had this characteristic in the bulk (indeed, the vast majority of
currently studied examples) will have lost it in the process of
sample preparation. The two new free surfaces introduced by the
thinning process will have relaxed some of the strain through the
well-known thin-film effect [12]. More importantly, the strain will
now vary over the viewing direction, which we will define
throughout as the z-axis. Furthermore, there is a tendency to look
at specimens which have z-dependent strain, even in the “bulk”.
Two cases in hand are quantum dot structures [8] and modern 3D
microelectronic devices such as FinFets [13]. It is therefore vital to
know what the measured strain corresponds to exactly.

The problem of z-dependent strain is not new and is inherent
to any electron microscopy technique designed to measure strain.
The difficulty is always how to evaluate, compensate and correct
for it in the analysis. Convergent-beam electron diffraction (CBED),
the first technique used to study strained-silicon devices [14],
breaks down in the presence of significant column bending due to
thin-film relaxation [15]. The only solution is to model the
relaxation with an assumed strain field, perform simulations and
compare with the experimental data [16]. To avoid brute-force
atomistic multislice calculations [17], a Feynman diagram technique
applied to dynamic theory was developed [18]. In this approach, the
strain is introduced as a perturbation to the full Bloch-wave calcula-
tion within the column approximation, and integrated numerically
slice by slice through the specimen thickness. A more analytical
theory does not currently exist.
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The evaluation of z-dependent strain is perhaps even more difficult
for zone-axis techniques such as high-resolution electron microscopy
(HRTEM) [3] or nano-beam electron diffraction (NBED) [19]. On one
hand, specimens tend to be thinner than for CBED, thus reducing
dynamic effects, but on the other hand, the number of beams involved
is prodigious. Beyond the woefully inadequate weak-phase object
approximation, the only alternative is atomistic multislice simulations,
coupled with image formation in the case of HRTEM [20]. Surprisingly,
high-angle annular dark-field imaging (HAADF) has seen the most
progress towards an analytical approach [21], following on the earlier
analysis in terms of strain-induced inter-band scattering [22].

Indeed, we have to return to simpler scattering conditions, such as
those prevalent in a DFEH experiment, to find an analytical theory
which can incorporate a z-dependent strain field, exemplified by
2-beam dynamical theory [23,24]. Within this theory, analytical
solutions were found for some special cases, such as Moiré contrast
and stacking fault contrast. These represent a single step in lattice
parameter (or strain) or displacement, respectively, within the foil
thickness. Other cases have been implemented by a slice by slice
approach with transmissionmatrices (see, e.g., the description in [25]).
In the following we will show that the theory can be extended to
include a varying z-dependent strain field in a more analytical way.

The organization of the paper follows closely the different levels
of approximations used to incorporate strained lattices into scat-
tering theory. After a short introduction to the optical setup of DFEH
(Section 2) and high-energy electron scattering (Section 3.1), we
discuss the notion of the geometric phase (Section 3.2) as an
approximate way to describe weakly deformed lattices. The next step
consists of contracting many-beam theory to the experimentally used
2-beam case (Section 3.3). Subsequently, Section 3.4 is devoted to the
discussion of special analytic solutions of the 2-beam case. Finally,
perturbation theory is applied to analyze the influence of a weakly
deformed lattice on scattering under 2-beam conditions (Section 3.5).
We use a Si-lattice uniaxially strained along ½001�-direction by means
of H-ion implantation as model system (see Fig. 1), which is suffi-
ciently simple for our purposes but also technologically important
within the so-called Smart Cut™ technology (SOITEC, France). Accord-
ingly, the ½004�-diffracted beam has been used for analyzing the strain.

2. Optical setup

To generate a dark field electron interference pattern, a strongly
excited diffracted beam is generated by deliberately tilting the
specimen into 2-beam conditions. Subsequently, the transmitted
beam is blocked by an aperture and diffracted beams originating
from an undisturbed and strained specimen region are superimposed
with the help of a Möllenstedt biprism to form a hologram in the
image plane. This optical setup is illustrated in Fig. 2. The slightly
changing diffraction angle within the strained region translates into a

phase shift in the reconstructed wave which is currently directly
interpreted in terms of a z-independent displacement field uðRÞ, i.e.
ϕGðRÞ ¼ �2πG � uðRÞ with G being the reciprocal lattice vector of the
diffracted beam [1,26]. From the displacement field one usually
derives the components of the physically more significant (infinite-
simal) strain tensor eij ¼ ð∂ui=∂rj þ ∂uj=∂riÞ=2. Additional phase terms
are due to thickness variations and misorientation of the sample in
combination with dynamic scattering; it has been argued that these
phases are small compared to the geometric term [1]. In the following
we will refer to reconstructed displacement or strain, when describing
the quantity measured by DFEH, in order to distinguish it from the
physical displacement or strain of the lattice. Furthermore, we neglect
any effect introduced by the aberration of the microscope since
modern TEM is equipped with hardware correctors [27], which
suppress the influence of aberrations for spatial resolutions in the
nm range considered here.

3. Scattering theory

3.1. High-energy electron scattering

We begin our discussion with defining some notation and basic
concepts, which will be used throughout the paper: the stationary
electron wave function will be denoted by ψðx; y; zÞ, with z being
parallel to the optical axis of the microscope. Planes conjugate to
the object exit plane will be described by magnification indepen-
dent Seidel coordinates [28] R¼ ðx; yÞT . The according reciprocal
space coordinates are denoted by K or G. Consequently, the 2D
Fourier decomposition of the wave function reads

ψðR; zÞ ¼ ei2πK0 �R∑
G
~ψ ðG; zÞei2πG�R ; ð1Þ

where K0 ¼ sin θ=λ is the in-plane component of the electron
wave with wave length λ and wave vector k0 spanning an angle θ
with the z-axis. Electrons are scattered by the electrostatic
potential VðR; zÞ with the according 2D Fourier decomposition

VðR; zÞ ¼∑
G

~V ðG; zÞei2πG�R : ð2Þ

Furthermore, it is useful to define the so-called interaction con-
stant depending only on the total electron energy E and some
fundamental physical constants

CE ¼
E

c2ℏ2k0z
: ð3Þ

Making use of this notation, the well-known Howie–Whelan (HW)
equation, describing the propagation of an electron wave in the
small-angle scattering approximation, reads (e.g. [25])

∂ ~φðG; zÞ
∂z

¼�i2π
G2 þ 2K0 � G

2k0z
þ iCE

~V G; zð Þ⊗ ~φ G; zð Þ: ð4Þ

Fig. 1. Strain field exxðrÞ generated by Hþ-implantation in a Si matrix as calculated
by finite element elastic strain theory. Note the significant effect of surface
relaxation due to the small TEM specimen thickness and the symmetry of the
strain with respect to the middle plane of the specimen. The linescan along x in the
middle plane z¼50 nm approaches the bulk strain of an infinitely thick specimen
and will be denoted by ebulkxx in the text.

Fig. 2. DFEH setup and coordinate system used in the text. Note that general
vectors are denoted by small bold letters, e.g. r, and vectors in ðx; y; z¼ const:Þ
-planes will be denoted by capital bold letters, e.g. R.
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