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a b s t r a c t

Analysis of the imaging of some simple distributions of object phase by a phase plate of Zernike type
shows that sharp transitions in the object phase are well transmitted. The low-frequency components of
the complete object function are attenuated by the plate. The behaviour can be characterised by a cut-on
parameter defined as the product of the cut-on frequency of the plate and a characteristic dimension of
the object. When this parameter exceeds a value of the order of unity, a sharp boundary in the object is
imaged by a Zernike plate as a dark lining inside the boundary with a white outline or halo outside the
boundary, in agreement with reported observations. The maximum diameter of objects that can be
imaged accurately is inversely proportional to the diameter of the hole for beam transmission in the
phase plate.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Phase plates are currently of interest in transmission electron
microscopy (TEM) for improving the imaging of weak phase
objects. When inserted at a suitable position in the column, a
phase plate can change the phase of a specific range of spatial
frequencies and can provide maximum image contrast for these
frequencies on passing through focus, thereby eliminating their
contrast reversal and simplifying the interpretation of images. Use
of a phase plate is also expected to reduce the electron dose
needed for imaging and thus reduce specimen damage.

One frequently used type of plate is rotationally invariant and is
described as having Zernike geometry. A simple form of Zernike plate
consists of a thin sheet of material of known mean inner potential
and provided with a central hole of radius r1 somewhat greater than
that of the unscattered electron beam. The thickness of the plate is
chosen to change the phase of the scattered electrons by the desired
amount relative to the unscattered beam, as described by Danev and
Nagayama [1]. This type of plate has an outer boundary at the
maximum aperture that is convenient but has no further structure.
Other possible ways have been demonstrated for producing a change
of phase that is independent of rotation around the axis. One method
uses electrodes arranged so that direct and scattered electrons see
different potential distributions as they pass through the structure.
The electrical lengths for the two paths differ, providing a phase
difference which can be varied in operation, as described for example
by Schultheiss et al. [2]. Another method being investigated uses a

thin ring carrying magnetic flux which produces a phase difference
by the Aharonov–Bohm effect [3]. Such a ring can either advance or
retard the phase of scattered electrons, depending on the direction of
circulation of flux which can be reversed by turning over the ring in
its holder. In principle, a Zernike plate provides the desired phase
difference at radii down to some minimum value r2. For the simple
sheet, r2 coincides with r1 but for other types of plate the two radii
differ. Electrons passing the plate at radii between r1 and r2 may be
intercepted, and those at radii less than r1 will not be changed
in phase.

Phase or amplitude contrast transfer functions show how the
transmission varies with frequency, but do not reveal the result of
imaging an object that superimposes many spatial frequencies. By
considering the imaging of strong phase objects, Beleggia has
shown [4] that the optimum phase change for the plate is a
function of object phase shift. Further detailed simulations [5,6]
have modelled strong phase objects and the transfer function of
the objective lens. The purpose of the present paper, in contrast, is
to obtain analytic results for the imaging of weak phase objects by
the phase plate alone, omitting any absorption or defects of lenses.
Although the objects to be used are much simpler than real
biological specimens, the analytical descriptions allow the change
of image with object size to be demonstrated clearly. The results
not only confirm that objects that are sufficiently small can be
imaged accurately, but also show that the ‘white halo’ and other
artefacts that appear with larger objects are due to the high-pass
filtering action of the phase plate, independent of any lens effects.
The cut-on frequency of a Zernike plate and a characteristic
dimension of the object can be combined to form a dimensionless
‘cut-on parameter’ whose value characterises the behaviour pro-
duced by this combination.
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The process of imaging by successive Fourier transforms, as
described in section 8.6.3 of Born and Wolf [7] and chapter 5 of
Goodman [8], is convenient for analysing the effect of a phase
plate. This process defines the imaging behaviour of a coherently-
illuminated perfect lens, ignoring quadratic functions of spatial
coordinates and magnification. According to section 5.3.2 of [8],
this neglect of quadratic factors is acceptable provided the object
is sufficiently small in comparison with the lens aperture, as is
likely to be satisfied in electron microscopy.

The results reported here are expressed in terms of various
special functions, as defined by Abramowitz and Stegun [9] and
the NIST Digital Library of Mathematical Functions [10]. This
analysis omits effects both of charging and of loss in the object
or phase plate, and applies only to weak phase objects.

2. General phase variation

At the object, a scattering centre acts as a source of a spherical
wave. An element of this wave initially diverging at an angle θ to
the axis arrives at the back focal plane (BFP) at a radius rs(θ). We
adopt the common approximation that

rs � θ f

where f is the focal length of the objective lens. To simplify later
analysis, the incident and scattered wave vectors k0 and k(θ) are
defined here to have magnitude 2π/λ, where λ is the electron
wavelength, and their difference, q(θ)¼k(θ)�k0, is a spatial
frequency in angular measure. From the geometry of scattering
for θ⪡1, q E kθ ¼ 2πθ/λ so q E 2πrs/λf. Since a Zernike plate
produces a phase change only for r 4 r2, it does so only for q
values greater than 2π r2/λf. This threshold value of q is is denoted
here by q0:

q0 ¼ 2πr2=λf

and is 2π times the corresponding quantity defined in [1,5,6] as the
‘cut-on’ frequency. It will be shown below that wave components
with q o q0 contribute little to the contrast, and so the plate acts
as a high-pass filter.

When transforms of this sort are calculated without the phase
plate, the integrals have ranges from 0 to 1 or �1 to 1, and
suitable evaluations can be found without difficulty. However, to
model a phase plate that provides a step change of phase at the
cut-on frequency, it is necessary to evaluate integrals with the cut-
on frequency as one of the limits. Very few suitable integrals are
then available, and this restricts the types of object for which
analytic solutions can be obtained. A semi-analytic solution is
presented here for an object that produces uniform phase change
over a cylindrical radius b. It is possible to find analytic solutions
somewhat more easily for equivalent systems in 1D Cartesian
coordinates, and two such solutions are presented here for
comparison. However, the Cartesian analysis implies that not only
the object but also the phase plate is of strip form and hence these
solutions do not represent the behaviour of strip objects with a
rotationally invariant Zernike plate. The spatial frequency spectra
of all these objects contain components down to zero frequency
and so are useful for modelling extended objects.

The mean potential in an object is more negative than the
vacuum potential, so an electron travelling through matter moves
with slightly greater average momentum than one of the same
energy in the surrounding space. Hence, within the object, the
electron wavelength is smaller, k is greater and the phase change
kz is increased, relative to the same distance of transit z outside
the object (section 4.2 of [11]). The phase changes induced both by
a typical phase object relative to the direct beam, and by a Zernike

plate on the scattered wave components relative to the direct
beam, are thus both positive.

Consider a wave described by

ψ ¼ exp i½kz�ωtþAϕ�

where A is the magnitude of phase shift and ϕ is a real function of x
or of r. Different functions ϕ will be specified for different objects,
with a maximum magnitude of 1. We ignore any attenuation and
make the weak-phase object approximation by assuming that Α⪡1.
The exponential can then be expanded to first order in A as

ψ � ð1þ iAϕÞ exp iðkz�ωtÞ

From here on we consider only far-field transforms, and omit
the factor exp iðkz�ωtÞ. The remaining complex amplitude of the
total wave

f ¼ 1þ i Aϕ ð1Þ

is a function of spatial coordinates. At any given point in the object
exit plane it can be represented on a phasor diagram as in Fig. 1(a).

The effect of the phase plate will be found by defining a phase
function ϕ for the object, finding the (spatial) frequency spectrum
of the whole wave, applying the phase change α from the plate as a
function of frequency and then transforming again to find the
modified wave g in coordinate space. The analyses below express
the results for g in the form

g¼ 1þ iAϕ� i ð1� exp iαÞAη ð2Þ

where η is a function of a transverse coordinate and of q0, the cut-
on frequency of the plate. If η is equal to ϕ, then (2) gives the same
result for g as if the vector iAϕ were rotated by α. Just as the phase
change of the original wave by the object is said to add the vector
of magnitude Aϕ, so the phase plate adds further components (Aη)
both opposing that vector and in the direction (αþπ/2).
The resulting intensity is, from (2),

jgj2 ¼ 1�2Aη sin aþOðA2Þ

Thus if the phase plate advances the scattered component (iAϕ)
in Fig. 1(a) and so rotates it counter-clockwise, the total wave g then
becomes smaller in amplitude than the initial wave (Fig. 1(b)),
the intensity is reduced and the image becomes darker. A general
rotation by α is analysed here, with phase advance (as provided by a
thin Zernike plate) shown by a positive value of α.

The relative distribution of intensity over the image is propor-
tional to sin α which is constant over the image, and to η which
varies over the image. When the object is sufficiently large (to be
quantified later), |η| is small over most of the image and the
variation of intensity remains proportional to A2. When the object
is sufficiently small, the magnitude |η| increases to the same order
as ϕ and the intensity contains a component proportional to A.
It will be shown that the distribution of η in the image plane may
differ substantially from that of ϕ.
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Fig. 1. (a) Wave incident on the object (shown as unit amplitude), wave f at exit
from the object and scattered wave iAϕ. (b) Wave f as in Fig. 1(a), wave g after
passing through the phase plate and wave components (Aη) introduced by the
phase plate (drawn here for α ¼ π/2).
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