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a b s t r a c t

In a recent article it is argued that the far-field expansion of electron scattering, a pillar of electron
diffraction theory, is wrong (Treacy and Van Dyck, 2012 [1]). It is further argued that in the first Born
approximation of electron scattering the intensity of the electron wave is not conserved to first order in
the scattering potential. Thus a “mystery of the missing phase” is investigated, and the supposed flaw in
scattering theory is seeked to be resolved by postulating a standing spherical electron wave (Treacy and
Van Dyck, 2012 [1]). In this work we show, however, that these theses are wrong. A review of the
essential parts of scattering theory with careful checks of the underlying assumptions and limitations for
high-energy electron scattering yields: (1) the traditional form of the far-field expansion, comprising a
propagating spherical wave, is correct; (2) there is no room for a missing phase; (3) in the first Born
approximation the intensity of the scattered wave is conserved to first order in the scattering potential.
The various features of high-energy electron scattering are illustrated by wave-mechanical calculations
for an explicit target model, a Gaussian phase object, and for a Si atom, considering the geometric
conditions in high-resolution transmission electron microscopy.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In a recent article, “A surprise in the first Born approximation for
electron scattering” [1], it is argued that the far-field expansion of
electron scattering, a pillar of electron diffraction theory, is wrong.
It is further argued that in the first Born approximation of electron
scattering the intensity of the electron wave is not conserved to
first order in the scattering potential. By comparing the near-field
and far-field expansions of electron scattering a missing phase of a
quarter wavelength is detected, and this “mystery of the missing
phase” is seeked to be resolved by an improved far-field expan-
sion. With this improvement the interference of an outgoing and
an incoming spherical wave is postulated, which would result in a
standing scattered electron wave with the desired additional
phase shift of a quarter wavelength.

These theses are wrong, however, and the notion of a missing
phase is a mere misconception in the comparison of the near-field
and far-field expansions. We will show that the far-field expansion of
electron scattering is correct, and that no extra phase shift of a
quarter wavelength has to be introduced for the scattered wave. We
will further show that in the first Born approximation the intensity is
indeed conserved to first order in the scattering potential.

In order to elucidate the arguments we will review the essen-
tial parts of scattering theory, focussing on high-energy electron

scattering, with all underlying assumptions and limitations clearly
presented. We have chosen as basis for the review classic textbooks
on optics [2], wave mechanics [3,4], and of transmission electron
microscopy [5,6], where rich sources of further material can be
found. The various mathematical expressions describing features of
electron scattering are illustrated by wave-mechanical calculations
for an explicit target model, a phase object with a Gaussian phase
distribution, considering the geometric conditions in high-resolution
transmission electron microscopy. In order to keep the review, the
illustration, and the discussion as concise as possible, explanatory
material, that can be found in the above textbooks as well, has been
organised in a number of Appendices.

2. Near-field and far-field expansion of electron scattering

In [1] the far-field expansion of electron scattering is derived
through the Green function formalism, in which the wave equation is
transformed into an integral equation. The boundary conditions of
the scattering problem are then expressed via the proper Green
functions, in this case an outgoing or an incoming spherical wave, or
linear combinations thereof. Here lies at first a certain arbitrariness,
as both spherical waves fulfil the mathematical requirement of
decreasing rapidly enough for large distances from the scattering
centre. The arbitrariness can be resolved by additionally judging the
physical situation in the scattering problem.

We will resort to Kirchhoff's diffraction theory [2], which is free
of mathematical arbitrariness and well-suited to derive, within
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one framework, not only near-field and far-field expansion but
also the propagation formula of electron scattering. The latter is
important for all calculations in the intermediate range of dis-
tances from the scattering centre, and it can also be used to
demonstrate the near-field and far-field limits.

Starting from the Fresnel–Kirchhoff diffraction integral [2] and
defining a point source S, an object plane Σ, and a detector plane D
parallel to Σ, the disturbance at the detector plane is

ψðRÞ ¼ ψSðRÞ�
i
λz

ψSðRÞ
ZZ

Σ
ðTðrÞ�1Þ exp πi

jr�Rj2
λz

� �
dΣ; ð1Þ

where r is a vector in the object plane, R is a vector in the detector
plane, z is the distance between these planes, λ is the wavelength,
T(r) is a transmission function defined on the object plane,

ψSðRÞ ¼ AS
expð2πiksÞ

s
expð2πikzÞ ð2Þ

the disturbance at the detector plane from the spherical source
wave alone, AS is the source amplitude, s is the distance from the
source to the object plane, and k¼1/λ. The origins for the vectors r
and R be the points of intersection of object and detector plane
with the optical axis running perpendicular to these planes
through the point source. The above forms for ψ(r) and ψS(R) rely
on the assumption of s being much larger than z and on the
parabolic expansion of the distances from the source point to an
object point, denoted by r, and from this object point to a detector
point, denoted by R. Compared to the standard form of the
Fresnel–Kirchhoff diffraction integral a separate term ψS(R) has
been isolated, being properly compensated by “�1” in the
integral. This form is particularly useful if T(r) differs from 1,
representing the undisturbed transmission in vacuo, only for a
small target area around the optical axis. Then T(r)�1 is zero
outside the target area, and the integral extends only over that
small area.

The near-field expansion of the Fresnel–Kirchhoff diffraction
integral is

ψNðRÞ ¼ ψP expð2πikzÞTðRÞ; ð3Þ
with ψP the amplitude of the plane source wave, see Appendix A.

The far-field expansion is

ψF ðRÞ ¼ ψP expð2πikzÞþ f ðgÞexpð2πikdÞ
d

� �
; ð4Þ

with the scattering factor

f ðgÞ ¼ � i
λ

ZZ
Σ
ðTðrÞ�1Þexpð�2πig UrÞdΣ; ð5Þ

the diffraction vector g¼R/λz, and setting d¼zþR2/(2z) in the
phase of the scattered wave. See Appendix B on the convention for
the symbol f(g). A careful consideration of all the geometric
approximations used so far shows that these are justified for the
small scattering angles of high-energy electron scattering, and that
the phase errors introduced are small enough to derive the far-
field limit from the Fresnel–Kirchhoff diffraction integral. The condi-
tions are shown in Appendix C.

The near-field and far-field expansions can now be investigated
more closely by assuming a phase change ϕ(r) of the electronwave
over the target area, and ϕ(r)¼0 outside, so that

TðrÞ ¼ expðiϕðrÞÞ ð6Þ
over the target area, and T(r)¼1 outside. This model, together
with the near-field expansion (3), is the phase grating approxima-
tion of electron scattering, the eikonal approximation of wave
optics, and the Wentzel–Kramers–Brillouin approximation of
quantum mechanics. In high-energy electron diffraction the phase
change ϕ(r) is derived from the integral of the electric potential

along straight trajectories through the target, parallel to the
direction from source to target, see e.g., [5,6] or Appendix D.

Expanding T(r) in orders of ϕ(r) yields the near-field expansion

ψNðRÞ ¼ ψP expð2πikzÞ 1þ iϕðRÞ�1
2
ϕ2ðRÞþOðϕ3ðRÞÞ

� �
; ð7Þ

and the scattering factor of the far-field expansion

f ðgÞ ¼ 1
λ

ZZ
Σ
ϕðrÞexpð�2πig UrÞdΣþ i

2λ

ZZ
Σ
ϕ2ðrÞexpð�2πig UrÞ dΣþOðϕ3ðrÞÞ:

ð8Þ
The leading term, linear in ϕ, of the scattered near-field wave has a
constant phase of π/2 relative to the plane source wave, whereas
the leading term of the scattered far-field wave (4) has a phase of
πR2/(λz) varying over the detector plane, if the real function ϕ(r) is
at least centro-symmetric, so that the first term of f(g) is real.
For R¼0 this phase is zero, and thus the phases of the leading
linear terms differ by π/2 in the forward direction. This considera-
tion can be extended to any order in ϕ, where the same difference
in phase of π/2 appears.

3. A journey from the near-field to the far-field

In high-energy electron scattering both the near-field and far-
field expansion derive from the Fresnel–Kirchhoff diffraction
integral, as shown above, and it is thus possible to investigate
the development of the phase of the scattered wave from the near-
field to the far-field by Fresnel propagation.

The expansion of the transmission function T(r) in orders of
ϕ(r) in the Fresnel–Kirchhoff diffraction integral (1),

ψðRÞ ¼ ψPexpð2πikzÞ 1þ ∑
1

m ¼ 1

im

m!

ZZ
Σ
ϕmðrÞ � i

λz

� �
exp πi

jr�Rj2
λz

� �
dΣ

� �
;

ð9Þ
is now solved for an explicit model of the phase object,

ϕðrÞ ¼ ϕ0 exp � r2

2b2

� �
; ð10Þ

yielding

ψðRÞ ¼ ψP expð2πikzÞ 1þ ∑
1

m ¼ 1

im

m!
ϕm
0

2πb2

2πb2þ imλz
exp �mπ

R2

2πb2þ imλz

 ! !
;

ð11Þ
in which the coordinate on the detector, R, and the propagation
distance, z, can be expressed in dimensionless quantities ζ¼λz/(2πb2)
and ρ¼ R=ð

ffiffiffiffiffiffi
2π

p
bÞ so that the scattered part, the sum in (11), becomes

SðρÞ ¼ ∑
1

m ¼ 1

im

m!

ϕm
0

1þ imζ
exp �mπ

ρ2

1þ imζ

� �
; ð12Þ

where the strength of the scattering and the rate of convergence of the
sum depend on ϕ0, the peak of the phase change (10). The scattering
factor (8) becomes

f ðgÞ ¼ 2πb2

λ
∑
1

m ¼ 1

im�1

m!

ϕm
0

m
exp �2π2b2

m
g2

 !
; ð13Þ

which can be rewritten as f(θ) or f(ρ), see Appendix E.
A map of the intensity at the detector plane, displayed in Fig. 1,

the modulus squared

jψðρÞj2 ¼ jψP j2j1þSðρÞj2 ð14Þ
as a function of the propagation distance, ζ, exhibits a number of
characteristic features, shown here for the case of weak scattering,
ϕ0¼0.1. A set of Fresnel fringes radiates from the target area, ρo1
at ζ¼0; the area covered by fringes is bounded by a cone ρ¼ζ
around the ζ axis, which corresponds to the upper limit, θmax, of
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