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a b s t r a c t

In this paper, the resonance frequencies and modal sensitivity of flexural vibration modes of a
rectangular atomic force microscope (AFM) cantilever immersed in a liquid to surface stiffness variations
have been analyzed and a closed-form expression is derived. For this purpose, the Euler–Bernoulli beam
theory is used to develop the AFM cantilever model in liquid. Then, an expression for the resonance
frequencies of AFM cantilever in liquid is derived and the results of the derived expression are compared
with the experimental measurements. Based on this expression, the effect of the surface contact stiffness
on flexural mode of a rectangular AFM cantilever in a fluid is investigated and compared with the case
that AFM cantilever operates in the air. The results show that in the low surface stiffness, the first mode is
the most sensitive mode and the best image contrast is obtained by excitation this mode, but by
increasing the sample surface stiffness the higher modes have better image contrast. In addition,
comparison between modal sensitivities in air and liquid shows that the resonance frequency shifts in
the air are greater than the shifts in the fluid, which means that for the similar surface stiffness the image
contrast in air, is better than liquid.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic analysis of AFM cantilever beams immersed in fluids is
of fundamental importance to the resolution of the nanoscale
imaging in liquids. In comparison with the air or vacuum environ-
ments, AFM cantilever dynamics in liquids remains much less
understood and requires further investigations [1]. Certainly, the
viscosity plays an important role in this case and must be considered
in the modeling of the dynamic behavior of the immersed cantile-
vers. The viscosity changes the natural resonance frequencies and the
damping parameters of each mode of the AFM cantilever. Several
theoretical models have been proposed for the AFM cantilevers
immersed in the liquid which consider the effect of the viscosity
[2–11]. Chu [9] presented an expression for the flexural resonance
frequency of a cantilever immersed in the fluid. However, Chu′s
analysis [9] is inapplicable at small scales where the effect of fluid
viscosity is increased. Other formulas for the resonance frequency of
the cantilever immersed in the fluid are proposed by [10]. However
these expressions are directly applicable for macroscopic cantilevers
and may introduce error once used for the analysis of the AFM
micro-cantilevers [10]. To calculate the resonance frequencies, in
[11–13], the hydrodynamics force is considered as a function of

added mass and damping and the expressions for cantilever
dynamics are developed.

Imaging the surface topography of the sample has been one of
the main goals for developing atomic force microscope.

Resonance frequency and sensitivity of the AFM have signifi-
cant impact on the image contrast. Several research works have
been carried out to analyze the effect of surface stiffness on the
modal sensitivity of AFM cantilever [14–19].

However, all of these studies concentrate on the operation of
AFM in the air and analyze the modal sensitivity of the AFM
cantilever in liquid has not been carried out yet.

In [20–22] inclusion of the dissipative terms and stochastic forces
excitation is considered and the behavior of micro-cantilever is
described by theory and experiments. These factors make challenges
in the modeling and analysis of cantilever dynamics in fluids, in
particular with respect to the sensitivity of the modes.

In this paper, the modal sensitivity of a rectangular AFM
cantilever immersed in the fluid has been studied. For this
purpose, the Euler–Bernoulli beam theory is used and by con-
sidering the hydrodynamic force in terms of added mass and
viscosity damping parameters, the dynamics of the AFM rectan-
gular cantilever immersed in the liquid is modeled.

Then the natural resonance frequency of each mode is calcu-
lated. Using the expression developed for the resonance frequen-
cies of the AFM cantilever in liquid, a closed form analytical
expression for the modal sensitivity of the AFM rectangular

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ultramic

Ultramicroscopy

0304-3991/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ultramic.2013.07.006

E-mail address: a.farrokhpayam@ece.ut.ac.ir

Ultramicroscopy 135 (2013) 84–88

www.sciencedirect.com/science/journal/03043991
www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2013.07.006
http://dx.doi.org/10.1016/j.ultramic.2013.07.006
http://dx.doi.org/10.1016/j.ultramic.2013.07.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.07.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.07.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2013.07.006&domain=pdf
mailto:a.farrokhpayam@ece.ut.ac.ir
http://dx.doi.org/10.1016/j.ultramic.2013.07.006


cantilever to the surface stiffness variations is derived. Then, using
numerical simulation, at first the results of the derived expression
for resonance frequencies are compared with other theoretical
model and experimental measurement [8]. Secondly, the modal
sensitivity of the AFM rectangular micro-cantilever in liquid is
studied and its behavior with that of the AFM cantilever operating
in the air is compared.

The method proposed in this paper not only increases the
precision of the calculated resonance frequency for the lower
eigen modes, but also provides a new expression for the analysis of
the sensitivity of AFM cantilever to the surface stiffness. To
calculate the resonance frequency and sensitivity, the hydrody-
namic force is directly considered in deriving the expressions by
taking into account the fluid environment by modeling added
mass and added viscous damping. This results in a simpler and
more accurate analytical method as compared with those in
literatures [2–11].

This precision especially for low eigen modes allows for the
sensitivity analysis and selection of proper excitation mode which
leads to the better image contrast.

2. Modal sensitivity of flexural vibration of AFM in liquid

The Euler–Bernoulli equation for a continuous and uni-
form cantilever shown in Fig. 1 with external force in liquids is
written as:

EI
∂
∂x4

Wðx; tÞ þ a1
∂Wðx; tÞ

∂t

� �
þ ρbh

∂2Wðx; tÞ
∂t2

¼ Fh þ Fext

þ δðx�LÞFtsðdÞ; ð1Þ

where E is Young′s Modulus, I is the area moment of inertia, a1 is
the internal damping coefficient, b;h and L are width, height and
length of the cantilever, respectively.

Wðx; tÞ is the time-dependent displacement of the cantilever,
FextðtÞ is the excitation force and FtsðdÞ is the tip-sample force,
where:

d¼WðL; tÞ þ Zc; ð2Þ
Fh is the hydrodynamic force and can be described by a

separate added mass and viscose damping and is given by
[12,13,23]:

FhðtÞ ¼ �mh
∂2

∂t2
Wðx; tÞ�ch

∂
∂t

Wðx; tÞ; ð3Þ

mh and chare defined later in Eqs.(14) and (15). The boundary
condition of the cantilever beam is given by:

Wð0; tÞ ¼ ∂Wð0; tÞ
∂x

¼ ∂2WðL; tÞ
∂x2

¼ 0;

EI
∂3WðL; tÞ

∂x3
¼ KfWðL; tÞ; ð4Þ

where Kf is the normal contact stiffness which is calculated by
linearizing the interaction force around equilibrium point and
expressed as effective spring constant.

The cantilever is clamped at x¼ 0 and is free at x¼ L. The
displacement of the cantilever can be written as:

Wðx; tÞ ¼ ∑
1

n ¼ 1
φnðxÞYnðtÞ; ð5Þ

Based on the method presented in [24,25], φnðxÞcan be
defined as:

φn xð Þ ¼ An sin knx�sinhknx�
sin knLþ sinhknL
cos knLþ coshknL

cos knx�coshknxð Þ
� �

; kn ¼
κn
L
;

ð6Þ
Normalization of the natural modes requires:

An ¼
1
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h i2

dx

vuut ;

ð7Þ
Such that φnðLÞ ¼ 1, with the characteristics equation given as:

Cðkn; βÞ ¼ κ3nð1þ cos κncoshκnÞ�βðsinhκn cos κn� sin κncoshκnÞ ¼ 0; ð8Þ

where β¼ Kf

EI=L3
is the normal stiffness ratio between the normal

contact stiffness and that of the cantilever. Also,Z L

0
φnðxÞφmðxÞdx¼

0
0:25

n≠m
n¼m

; φnð0Þ ¼ 0; φnðLÞ ¼ 1;
�

ð9Þ

After some mathematical calculations given in the Appendix,
the AFM cantilever dynamics equation is obtained as:

€YnðtÞ þ ωn

Qn

_YnðtÞ þ ω2
nYnðtÞ ¼ FnðtÞ

mn
; ð10Þ

where FnðtÞ is the external force applied to the cantilever which is
calculated in the appendix (Fi) and

mn ¼Mi ¼ 0:25ðmh þ ρbhÞL; ð11Þ

ω2
n ¼ k4n

EI
mh þ ρbh

; ð12Þ

Qn ¼
ωn

ch= ρbhþmhð Þ þ a1ω2
n
; ð13Þ

The added mass and damping stiffness of hydrodynamic force
are given by [12,13]

mh ¼
π

4
ρf b

2Re ΓðωÞ½ �; ð14Þ

ch ¼
π

4
ρfωb

2Im ΓðωÞ½ �; ð15Þ

where

Γ ¼ Γr þ jΓi; ð16Þ

Γr ¼ a′1 þ
a′2ffiffiffiffiffiffi
Re

p ;Γi ¼
b′1ffiffiffiffiffiffi
Re

p þ b′2
Re

; ð17Þ

where a′1 ¼ 1:0553; a′2 ¼ 3:7997; b′1 ¼ 3:8018; b′2 ¼ 2:73642 [13].
The Reylonds number is calculated by [26]Fig. 1. Schematic of rectangular cantilever.
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