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a b s t r a c t

Thickness fringing was recently observed in helium ion microscopy (HIM) when imaging magnesium
oxide cubes using a 40 keV convergent probe in scanning transmission mode. Thickness fringing is also
observed in electron microscopy and is due to quantum mechanical, coherent, multiple elastic scattering
attenuated by inelastic phonon excitation (thermal scattering). A quantum mechanical model for elastic
scattering and phonon excitation correctly models the thickness fringes formed by the helium ions.
However, unlike the electron case, the signal in the diffraction plane is due mainly to the channeling of
ions which have first undergone inelastic thermal scattering in the first few atomic layers so that the
origin of the thickness fringes is not due to coherent interference effects. This quantum mechanical
model affords insight into the interaction of a nanoscale, focused coherent ion probe with the specimen
and allows us to elucidate precisely what is needed to achieve atomic resolution HIM.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Helium ion microscopy (HIM) is an analytic technique that has
been used for imaging at the nanoscale and a resolution of
0.24 nm has been achieved [1]. Imaging in HIM has typically been
performed using secondary electrons which exit the entrance
surface of the specimen [2]. The feasibility of operating in
transmission mode, scanning transmission helium ion microscopy
(STHIM), has only recently been explored in any detail [3].
Nanometer scale resolution imaging was demonstrated using a
convergent 40 keV Heþ4 beam to image MgO particles as a function
of thickness. An apparently diffraction-related phenomenon was
observed, namely thickness fringing, as shown in Fig. 1(a). The
inset shows thickness fringes obtained from a 〈110〉 oriented MgO
nanocube [3]. The experimental points are from two scans taken at
right angles to the fringes. Thickness fringing is also observed in
electron diffraction and is due to coherent multiple elastic scatter-
ing of the electrons, attenuated by thermal diffuse scattering (TDS)
due to phonon excitation [4].

In this paper we use a quantum mechanical model to simulate
HIM. Using this model we see that the thickness fringes become
apparent after substantial inelastic scattering because TDS has
occurred in the first few atomic layers in the crystal (perhaps
multiple times). Therefore the origin of the thickness fringes is not
due to coherent interference effects, as is the case in electron
microscopy. Our model provides an understanding of what is

needed to achieve atomic resolution HIM. Forbes et al. [5] recently
developed a model for the elastic scattering and the inelastic
scattering due to phonon excitation by fast electrons incident on a
crystal—referred to here as the QEP (quantum excitation of
phonons) model. The quantum mechanical underpinnings of this
approach are in contrast to the frozen phonon model [6,7]. The
model has the advantage that the contribution to the signal in the
diffraction plane can be separated into the component which is
due to elastic scattering and that which is due to TDS. It has
recently been successfully applied in the context of scanning
transmission electron microscopy (STEM) imaging to explain
apparent anomalies in the oxygen signal in strontium titanate
using both electron energy-loss spectroscopy and energy-
dispersive X-ray analysis [8]. In a similar way, here we use the
QEP model to provide insights into the interaction of a focused,
coherent, nanoscale helium-ion probe with a crystal. Classical
(Monte Carlo) models [2,9] correctly predict channeling patterns
from a single crystal, as established several decades ago—see for
example Refs. [10,11]. However, here we use the quantum
mechanical QEP model for the physical insight it provides con-
cerning the interaction of the nanoscale probe with the specimen
and the clear understanding it then gives regarding what is
needed to achieve atomic resolution imaging in HIM.

2. Theory

The QEP model starts from the many-body Schrödinger equa-
tion for the incident particle plus all the nuclei and electrons in the
target. It is applicable not only to electrons but also to any charged
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incident particle for which the assumptions and approximations
made hold. The many body wave function for the incident particle
plus target is written in the form

Ψ ðr; τn; τeÞ ¼ aðτnÞbðτeÞϕðr; τnÞ; ð1Þ
here r refers to the co-ordinate of the incident particle (in this
context an ion), τn is the set of nuclear co-ordinates and τe
designates the set of all the co-ordinates of the electrons in the
target. The term aðτnÞbðτeÞ represents a crystal eigenstate and it has
been assumed that the electron and nuclear subsystems can be
decoupled for the purposes of considering phonon excitation,
which is an interaction of the incident ion with the nuclear
subsystem. The quantity ϕðr; τnÞ is associated with the incident
ion. The key assumption we make is that aðτnÞ might be chosen
such that ϕðr; τnÞ satisfies
∇τnϕðr; τnÞ≈0; ð2Þ
allowing us to neglect such derivatives of ϕðr; τnÞ. It is shown in
Ref. [5] that the ground state of the nuclear subsystem is a good
choice for aðτnÞ. The assumption in Eq. (2) is akin to the Born–
Oppenheimer approximation, used in molecular physics, for the
function ϕðr; τÞ associated with the ion. Physically this means that
ϕðr; τnÞ is insensitive to variations in the co-ordinates of the crystal
nuclei. This is consistent with the disparity in energy between the
incoming ion (tens to thousands of keV) and the energy associated
with exciting phonons in the nuclear subsystem (meV).

The probability distribution of the ion in the plane defined by
the co-ordinate r⊥ at a depth z in the crystal [or at any plane
beyond the crystal having propagated the ϕðr; τÞ at the exit

surface] is obtained by a quantum-mechanical average over the
nuclear coordinates, using Eq. (1), as

IðrÞ≡Iðr⊥; zÞ ¼
Z

jΨ ðr⊥; z; τn; τeÞj2 dτ

¼
Z

jϕðr⊥; z; τnÞj2jaðτnÞj2 dτn
Z

jbðτeÞj2 dτe

¼
Z

jϕðr⊥; z; τnÞj2jaðτnÞj2 dτn; ð3Þ

where the integration over the electronic degrees of freedom is
assumed to be normalized to unity and jaðτnÞj2 is acting as
a probability distribution. The function ϕðr⊥; z; τnÞ satisfies
a Schrödinger-like equation with an interaction potential Vðr; τnÞ
[5] that we solve using the well-known multislice method [12].
The probability distribution jaðτnÞj2 can be calculated assuming
that the nuclear subsystem is modeled as a set of independent
harmonic oscillators (a so-called Einstein model), as discussed in
Ref. [5], with input being the Debye–Waller factors (related to the
root-mean-square thermal displacements) of the various atoms in
the specimen. The probability distribution in reciprocal space
(i.e. in the diffraction plane) is obtained by replacing ϕðr⊥; z; τnÞ
in Eq. (3) by its Fourier transform. The interaction potential
Vðr; τnÞ, for a given configuration τn, is written as

Vðr; τnÞ ¼∑
g
VgðτnÞexpð2πig � rÞ; ð4Þ

where the Fourier coefficients Vg are given by

Vg ¼ 1
Vc

∑
j
expð�2πig � τn;jÞf jðgÞ; ð5Þ

here g are reciprocal lattice vectors, Vc is the volume of the unit
cell, τn;j explicitly refers to the position of atom j in the unit cell for
configuration n and fj(g) is the atomic scattering factor for atom j,
given by

f jðsÞ ¼
8π2me

h2

Z 1

0
r2VjðrÞ

sin ð4πsrÞ
4πsr

dr; ð6Þ

where conventionally s≡g=2. The mass of the ion is m and e is the
magnitude of the charge of an electron. The scattering potential
Vj(r) of the jth atom is assumed to be spherically symmetric and is
repulsive. We use the parameterization for the scattering potential
Vj given in Ref. [13]:

VjðrÞ ¼� 1
4πϵ0

QQ ′
r

∑
4

i ¼ 1
αiexp � βir

a

� �
; ð7Þ

where ϵ0 is the permittivity of free space, Q¼Ze and Q ′¼ Z′e are
the net charges of the projectile and the charge of the nucleus of
the target atom labeled by j and a is the screening radius. The
parameters in Eq. (7) are as follows:

αi ¼ f0:1818;0:5099;0:2802;0:02817g
βi ¼ f3:2000;0:9423;0:4029;0:2106g

a¼ 0:8853aB
Z0:23 þ ðZ′Þ0:23

; ð8Þ

with aB being the Bohr radius. Here we are considering the
scattering of Heþ4 from MgO. Therefore Z¼1 and Z′ is either 8
(O) or 12 (Mg). The potential Vðr; τnÞ, as given by Eq. (4), is shown
in Fig. 2(a) projected over a unit cell for Heþ4 ions incident along
the [110] zone axis in MgO for one possible configuration of the
atoms τn.

3. Simulations

Using an ensemble of potentials generated assuming an Einstein
model [5] and taking the Debye–Waller factors from Ref. [14], we
have simulated the experimental thickness fringes in Fig. 1(a)

Fig. 1. (a) Inset: Thickness fringes formed by a convergent 40 keV Heþ4 ion probe
incident on 〈110〉 MgO using a detector with an acceptance semi-angle of 10 mrad.
Experimental points are line scans normal to the fringes (open and closed markers
indicate data from either side of the central maximum). Data from Ref. [3]. The
solid line is the fringing predicted by the QEP model and the dashed line further
takes into account absorption due to ion–electron interactions. (b) The QEP model
calculation in (a) decomposed into the contribution from elastically scattered ions
and those that have been inelastically scattered (thermally). Also indicated are the
total elastic and total inelastic contributions in the diffraction plane (i.e. including
scattering outside the 10 mrad detector).
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