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a b s t r a c t

We present model-based image simulations for zero-loss and plasmon-loss filtered images at 20 kV for
graphene and silicon based on the mutual coherence approach. In addition, a new approximation for the
mixed dynamic form factor is introduced. In our calculation multiple elastic scattering and one inelastic
scattering are taken into account. The simulation shows that even the intensity of zero-loss filtered image
is attenuated by the interference between inelastically scattered waves. Moreover, the intensity of
plasmon-loss filtered images cannot be neglected, either.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The standard simulation and interpretation of TEM images are
based on the elastic scattering theory. This approximation is
sufficient for most thin crystalline objects imaged at voltages
larger than about 100 kV. In these cases, phase contrast dominates
and the contribution of inelastic scattering to the total contrast is
negligibly small. However, due to radiation damage caused by
atom displacement at higher accelerating voltages 4100 kV, the
use of lower voltages (20–80 kV) becomes necessary as realized
within the frame of the SALVE (Sub-Angstrom Low-Voltage Elec-
tron microscopy) project [1]. As the voltage drops down, the
wavelength increases resulting in a decrease of resolution for a
fixed usable aperture angle determined by the aberrations of the
imaging system. Thanks to the new generation of Cs=Cc− corrector
[2], transmission electron microscopes can now reach sub-
Angstrom resolution down to about 60 kV. The novel SALVE
corrector provides a usable aperture angle of about 50 mrad,
which is supposed to lower the resolution limit to 1:7 Å at 20 kV
and to 1:2 Å at 40 kV [3].

When the accelerating voltage is decreased to as low as 20 kV,
all objects are strong scatterers [4]. In addition, the elastic model is
not sufficient anymore and inelastic scattering must be taken into
account especially for low-Z objects. As a result, the interpretation
of the images becomes rather involved. In the case of inelastic
scattering, the incident electron changes the initial state of the
object to any allowed excited state. The initial wave function
ψ t ¼ ψ0j0〉 of the total system is the product of the wave function
ψ0 of the incident electron and the wave function j0〉 of the ground

state of the object. After the scattering, the total wave function of
the system does not factorize anymore and adopts the entangled
form

ψ t ¼ ∑
∞

j ¼ 0
Ψjjj〉: ð1Þ

The interaction of the incident electron with the particles of the
object results in a transition of the object state from the ground
state j0〉 to an excited state jj〉 and a change of the wave function of
the incident electron from ψ0 to Ψj. For j¼0, the scattering process
is elastic and

Ψ0 ¼ ψ0 þ ψe ð2Þ
is the sum of the incident wave ψ0 and the elastically scattered
wave ψe. Inelastic scattering is incorporated into the image
simulations by means of the Mixed Dynamic Form Factor (MDFF),
introduced by Rose [5,6]. The MDFF accounts for the interference
of different scattered partial electron waves. The elastically scat-
tered partial waves can interfere with each other, whereas the
partial waves of the inelastically scattered electron can only
interfere with each other if they are associated with the same
excited object state. A detailed discussion is presented in Section 2.1.
Schattschneider [7] introduced the density matrix approach as an
alternative method. The difference between the two approaches
is that the MDFF describes the interference of the scattered waves
in reciprocal space, whereas the density matrix method handles
it in real space. The MDFF involves the coupling of two waves.
Therefore the image calculation involves 4D Fourier transforms.
The numerical calculation of 2D Fourier transform is usually
performed very rapidly by applying the fast Fourier transform
(FFT). The number of arithmetic operations required for the FFT on
a N�N matrix is 2N2 log 2 N; however, for a N � N � N � N array,
the number of operations increases to 4N4 log 2 N, which demands

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ultramic

Ultramicroscopy

0304-3991/$ - see front matter & 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ultramic.2013.05.020

n Corresponding author. Fax: +49 731 5022958.
E-mail address: zhongbo.lee@uni-ulm.de (Z. Lee).

Ultramicroscopy 134 (2013) 102–112

www.sciencedirect.com/science/journal/03043991
www.elsevier.com/locate/ultramic
http://dx.doi.org/10.1016/j.ultramic.2013.05.020
http://dx.doi.org/10.1016/j.ultramic.2013.05.020
http://dx.doi.org/10.1016/j.ultramic.2013.05.020
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ultramic.2013.05.020&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ultramic.2013.05.020&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ultramic.2013.05.020&domain=pdf
mailto:zhongbo.lee@uni-ulm.de
http://dx.doi.org/10.1016/j.ultramic.2013.05.020


2N2 times of computational expenditure compared with the 2D
case. The image calculation for thick objects usually involves the
multislice algorithm, and the computational task required for the
propagation of the 4D array through all the slices will be too time-
consuming.

In order to tackle the 4D problem in a computation-efficient
way, different methods for the factorization of MDFF or density
matrix have been proposed with different applications [7–17,
19–22]. Within the core-loss range where the scattering is highly
localized, Stalknecht and Kohl [8] as well as Navidi-Kasmai and
Kohl [9] proposed the calculation of the density matrix elements
based on the first-order perturbation theory combined with Bloch-
wave function. Schattschneider employed the dipole approxima-
tion [7] and this approximation was applied for the calculation
of EFTEM images by Verbeeck et al. [10]. Dwyer et al. [11,12]
calculated the density matrix elements for atomic ionization based
on the work of Saldin [13]. Lugg et al. [14] computed the bound-
state wave based on a relativistic Hartree–Fock model. Löffler et al.
[15] introduced the method of matrix diagonalization. For the low-
loss range where the inner shell structure is neglected, Müller
et al. [16,17] utilized Bessel functions for the factorization of the
MDFF obtained by employing the Raman–Compton approximation
[18]. In [19–22] the MDFF was calculated by using precise wave
functions. The result applies for all energy-losses, but at the
sacrifice of efficiency.

This paper concentrates on the image simulation for the low-
loss range and our simulation is based on the multislice mutual
coherence method outlined in [16,17]. In addition, we introduce a
new approximation for the MDFF. This approximation keeps the
maximum similarity with the MDFF function, obtained by utilizing
the Raman–Compton model [18] and the Wentzel model [23] for
the atom potential. Our approximation can be applied to different
imaging conditions, without loss of computational efficiency.

2. Theory

2.1. Coherence and incoherence

Coherence indicates that there is a fixed phase relation
between the waves (wavepackets), so that the waves(wavepack-
ets) can interfere with each other. Incoherence indicates that there
is no fixed phase relation between the waves (wavepackets), and
the observable intensity is a summation of the intensities of the
waves (wavepackets).

The eigenstates of the object are mutually orthogonal, which
leads to

〈mjj〉¼ δmj: ð3Þ
Therefore the observable intensity of the system in Eq. (1) can

be written as

ψn

t ψ t ¼ ∑
∞

m ¼ 0
〈mjΨn

m

� �
∑
∞

j ¼ 0
Ψjjj〉

 !
¼ ∑

∞

m;j
Ψn

mΨjδmj

¼ ∑
∞

j ¼ 0
jΨjj2 ¼ ∑

∞

j ¼ 1
jΨjj2 þ jψ0 þ ψej2: ð4Þ

Since the intensity ψn
t ψ t is the superposed intensity contributed by

each scattered partial wave corresponding to different object
eigenstates, the conclusion is that the scattered waves are inco-
herent with each other as long as the coupled object states are
different. The second term implies that the elastically scattered
wave ψ e can interfere with the non-scattered wave ψ0.

For elastic scattering, the incident wave function ψ0 propagates
through the object. However, a pure wave function cannot be
applied for the description of imaging process involving inelastic
waves because inelastic waves are always coupled with the

corresponding object states. Rose was inspired by the concept of
mutual coherence function applied in optics, and extended its
usage to the handling of the wave propagation in the electron
microscope [5]. Mutual coherence function accounts for the spatial
and temporal interference between the waves which correspond
to the same object state. Unlike the pure wave function, the
propagation of the mutual coherence function Γ0 preserves the
object information as well as the amplitude and phase resulting
from wave interference.

Γ0 ¼ 〈Ψnð r!′; tÞΨð r!; t−τÞ〉T : ð5Þ
Here τ is the temporal difference between the two waves, and r!′

and r! indicate that the two waves originate from different
sources. T represents the time average.

2.2. The concepts applied for the image calculation involving both
elastic and inelastic scattering

In order to clarify the concepts utilized for the image calcula-
tion involving both elastic and inelastic scattering, the counter-
parts used for pure elastic scattering are listed in Table 1,
exemplified by a thin sample.

� MCF – Mutual Coherence Function.
� MOT – Mutual Object Transparency.
� POA – Phase Object Approximation.

The time-averaged phase factor 〈χ〉 is proportional to the static
projected atomic potential defined as

χð ρ!Þ¼−
1
ℏv

Z ∞

−∞
∑
n

j ¼ 1
Vjðρ; z′Þ dz′; ð6Þ

where ℏ is the Planck constant, v is the velocity of the electron and
Vjðρ; z′Þ is the position-dependent atomic potential of the jth atom.

The Taylor expansion of the MOT to the second order of χ
results in Eq. (7), [6]

γð ρ!; ρ!′; τÞ≈exp½iμ1ð ρ!Þ−iμ1ð ρ!′Þ−1
2 μ2ð ρ!Þ−1

2μ2ð ρ!′Þ þ μ11ð ρ!; ρ!′; τÞ�
ð7Þ

with the definitions

μ1ð ρ!Þ¼ 〈χð ρ!; tÞ〉; ð8Þ

μ11ð ρ!; ρ!′; τÞ ¼ 〈χð ρ!; tÞχð ρ!′; t−τÞ〉−〈χð ρ!; tÞ〉〈χð ρ!′; t−τÞ〉
¼ ∑

n≠m
Pmeiωnmτ〈m χð ρ!′Þ n〉〈n χð ρ!Þ m〉

��������
¼ αs

πβ

� �2

∭ e−iωτ
SðK!; K

!
′;ωÞ

K2 K ′2 ei K
!

ρ!e−i K
!

′ ρ!′ dω d2 K
!

ρ d
2 K
!

′ρ′; ð9Þ

μ2ðρÞ≈〈χ2ðρ; tÞ〉−〈χðρ; tÞ〉2 ¼ μ11ðρ¼ ρ′; τ¼ 0Þ: ð10Þ
Here αs ¼ 1=137 is the Sommerfeld constant, β¼ v=c and c is the
velocity of the light. The function μ1 represents the static projected
potential. The variable μ2 accounts for the decrease of the intensity
of the incident MCF caused by the reduction of the purely
elastically scattered electrons; therefore μ2 can be interpreted as
the absorption potential. The factor μ11 accounts for the increase of

Table 1
The concepts utilized for the description of elastic/inelastic scattering and pure
elastic scattering.

Status Elastic/Inelastic Pure elastic

Incoming Γ0 ¼ 〈Ψn

0ð r
!

′; tÞΨ0ð r!; t−τÞ〉T (MCF) Ψ0ð r!Þ (pure)
Target

γ ¼ 〈eiχð ρ
!

;tÞe−iχð ρ
!

′;t−τÞ〉 (MOT) eiχð ρ
!Þ (POA)

Outgoing Γf ¼ Γ0 � γ (MCF) Ψ0eiχ (pure)
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