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a  b  s  t  r  a  c  t

Modeling  of  compliant  mechanisms  incorporating  flexure  hinges  is mainly  focused  on  linear  methods.
However,  geometrically  nonlinear  effects  cannot  be  ignored  generally.  This  work  shows  that  nonlinear
behavior  plays  an  important  role  in the  deformation  and  stress  analysis,  which  consequently  impacts
the  design  of compliant  mechanisms.  In  this  study  a nonlinear  higher  order finite beam  element  based
modeling  approach  is  presented  strongly  reducing  the  computation  time  of  nonlinear  models.  Planar
deformation  and  mechanical  stress  of  a single  circular  flexure  hinge  under  a wide  range  of  loads  is modeled
and  computed  with  the proposed  approach.  A  comparison  with  a 3D-nonlinear  finite  element  model
shows  very  good  agreement  and  validates  the  beam  model.  It  is shown  that  the  linear  and  nonlinear
deformation  behavior  of a  single  flexure  hinge  deviate  marginally  so  that  linear  modeling  approaches  are
sufficient.  Furthermore  a planar  displacement  amplification  mechanism  incorporating  circular  flexure
hinges is  studied  by means  of  the  same method  highlighting  the  distinct  deviation  of  the  behavior  of
the  geometrically  nonlinear  model  from  its  linear  prediction.  In conclusion  the  nonlinear  behavior  at  the
system  level  can  not  longer  be  neglected.  Finally,  a  study  shows  that different  designs  of  the displacement
amplification  mechanism  are  achieved  when  linear  or nonlinear  modeling  approaches  are applied.

© 2015 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Flexure hinges allow rotation between two adjacent stiff mem-
bers by the elastic deformation of a flexible connector. Because of
their very precise, smooth motion compliant mechanisms based
on flexure hinges find application for example in metrology instru-
ments [1] and positioning systems for industry [2], where backlash,
friction and wear are undesirable. The virtually limitless poten-
tial for miniaturization of compliant mechanisms established their
broad use in microelectromechanical systems (MEMS).

The conceptual design of a compliant mechanism consist of the
topological followed by the dimensional synthesis [3]. The topo-
logical synthesis is realized by means of topology optimization or
kinematics based methods to determine the positions and inter-
connections of the flexure hinges within the design space. In both
approaches a geometrically nonlinear analysis is commonly applied
[4]. Goal of the challenging dimensional synthesis is the determi-
nation of size, geometry and shape of the flexure hinges and other
parts of the mechanism. Many modeling approaches like the inte-
gration of the beam equations [5,6], inverse conformal mapping
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[7] and empirical methods [8,9] to describe the stiffness or com-
pliance characteristics of flexure hinges have been proposed and
validated. Also the finite element method with partly very large
models has widely been employed [10]. These investigations are
linear. The disagreement between a nonlinear topological and a
linear dimensional synthesis is obvious but yet scarcely addressed
in research. In a linear analysis of the system shown in Fig. 1, the
force F causes a transverse deflection w but neglects the axial dis-
placement u. This assumption holds true as long as the deflection
is small. As the deflection becomes larger with an increasing force,
the geometrically nonlinear effect can not longer be neglected [11].
The major drawback of flexure hinges is their limited capacity of
rotation due to stress restrictions. Hence the optimization goal of
developers of compliant mechanisms is to maximize the output
motion [12]. Nevertheless linear models are applied. Also exper-
imental data shows a deviation from the linear model for larger
input forces, but a nonlinear effect is not suspected as cause [13].

The modeling of flexure hinges by finite beam elements has been
proposed before but stayed limited to a linear analysis [14,15]. The
Equivalent Beam Methodology (EBM) proposed by Zettl et al. is an
approximation technique in which the flexure hinge is substituted
by three straight finite beam elements to obtain a computation-
ally efficient model with superior accuracy [14]. Nevertheless these
desirable properties come with major drawbacks. The geometric
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Fig. 1. Nonlinear deflection of a beam.

parameters of these three beam elements have to be obtained from
a costly 3D analysis. Changing the loading condition or geometric
parameters of the flexure hinge entails a recalculation of the 3D
model. Taking advantage of advances in the development of finite
element formulations for non-uniform beams [16], a 3-node finite
beam element of variable cross-section for modeling circular flex-
ure hinges has been proposed by Lobontiu [15]. Lobontiu’s model
takes shear deformation into account however, it is linear. Although
nonlinear beam modeling approaches are readily available e.g.
[17,18] they have rarely been employed to model flexure hinges.
Boer et al. [19] present a substructuring method to obtain linear
reduced mass and stiffness matrices of flexible members. From this
basis a nonlinear superelement is generated for multibody analysis.
However, this approach is not applied to the modeling and design
flexible members with a continuous variation in cross-section like
flexure hinges and the modal analysis, which is necessary to obtain
the reduced mass and stiffness matrices, makes it impractical in
applications where the geometry is updated continuously, e.g. in
structural optimization.

In this work the linear modeling approach presented in [20],
which simplifies the real deformation behavior of compliant mech-
anisms, is extended into the nonlinear field. The influence of
geometrically nonlinear effects on the deformation and stress
characteristics of planar compliant mechanisms is demonstrated.
Since nonlinear analyses of 3D finite element models can consume
an enormous amount of computational resources a sophisticated
modeling approach based on an established geometrically nonlin-
ear finite beam element procedure [18] is applied. This approach
is validated by a simple benchmark with a single circular flexure
hinge. Then a planar compliant displacement amplification mech-
anism incorporating circular flexure hinges is analyzed and the
implications of nonlinear behavior on functionality and design of
this compliant mechanism are discussed.

2. Nonlinear Euler–Bernoulli beam theory

Based on the Euler–Bernoulli hypothesis the governing equa-
tions of a planar geometrically nonlinear beam element are derived
in accordance with [18] and a corresponding finite beam ele-
ment procedure is developed. The implementation of a Timoshenko
beam element is an alternative approach, especially for modeling
short an compact beams. However, the main deformation of the
flexure hinge occurs in the center of the flexure hinge as detailed
3D finite element analysis shows [21]. In the center of the flex-
ure hinge the lengths to thickness ratio justifies an Euler–Bernoulli
beam model.

2.1. Governing equations

In a Cartesian coordinate system (x, y, z) the displacement field
(u1, u2, u3) of a planar two dimensional geometrically nonlinear
beam (cf. Fig. 2) is composed of axial displacements u0(x) and trans-
verse deflections w0(x):

u1 = u0 (x) − zp
dw0 (x)

dx
, u2 = 0, u3 = w0 (x) . (1)

Fig. 2. Displacement field of an arbitrarily loaded and supported beam.

Fig. 3. A beam segment of length dx with internal and external forces.

Substituting the displacement field in Green’s strain tenso
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where �0
11 is the axial strain and �1

11 is the curvature, is obtained.
Other strain components are neglected. Applying Hooke’s law
�11 = E �11 with Young’s modulus E, the internal forces

N = EA �0
11

M = EI �1
11

(5)

are derived from the strains. Cross section area A and second
moment of inertia I are functions of x as they contain the variable
thickness of the flexure hinge. For clarity reasons the notation (x)
is omitted in the following considerations. Performing the equilib-
rium of forces and moments for the infinitisimal beam segment of
length dx in Fig. 3∑

Fx = 0 = (N + dN) + n dx − N (6)∑
Fz = 0 = (Q + dQ ) + q dx − Q (7)∑
My = 0 = (M + dM) − M − Q dx + N dx

dw0

dx
+ q dx (cs dx) (8)

where N, Q and M are the respective internal force variables and
n and q are the respective external arbitrary distributed loads.
Omitting higher order term and substituting Eq. (8) into (7) the
governing equations of equilibrium
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