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1. Introduction

Complex equipment such as aircrafts, ships, wind turbines are
designed to work over decades in harsh environment. Thus,
performance degradation is inevitable during its operation, which
can lead to malfunctioning, resulting in high maintenance costs.
Prognostics and health management (PHM) has been introduced
for the reliable operation of complex equipment. It is used to
monitor the equipment condition, perform the diagnosis and
prognosis, and provide design rules for maintenance [1].

However, most current works on PHM are primarily driven by
the equipment in its physical space, with little connection to its
virtual model. Currently, with the development of cyber-physical
system (CPS), it is critical to attach importance to the virtual space
and implement the seamless convergence of physical and virtual
spaces, to improve the PHM for complex equipment. In this
context, in the virtual space, a digital mirror of the equipment and
its data are introduced to depict the behaviour of the real entity.
Some potential applications have been explored in Ref. [2],
however, to implement PHM driven by both physical and virtual
spaces, some outstanding common issues still exist. They include
(1) building the high-fidelity digital mirror to describe the
equipment thoroughly; (2) establishing the interaction between
the equipment and its digital mirror to make them support PHM
seamlessly; (3) converging the data from physical space and virtual
space to generate accurate information for PHM.

In this paper, digital twin (DT), a reference model for the
physical–virtual convergence, is applied to address the above three
issues. Firstly, based on DT, a high-fidelity digital mirror model for
the equipment is built in different levels of geometry, physics,

behaviour and rule. It provides access to the equipment even out of
physical proximity. Secondly, the interaction mechanism of DT can
detect the disturbances from the environment, potential faults in
the equipment and defects in the models. It is a coupled
optimization to make the equipment and digital model evolve
continuously. Thirdly, since DT includes data from the equipment,
the digital model, and the fused data, data for PHM can be enriched
greatly to provide accurate information.

In this study, a five-dimension DT for complex equipment is first
established, then a new approach for PHM driven by DT for
complex equipment is proposed, and its framework and workflow
are explored in detail. A case study of a wind turbine is presented to
show the effectiveness of the proposed new method.

2. Five-dimension DT model

A general and standard architecture for DT model was first built
by Grieves [3]. In this architecture, the DT is modelled in three
dimensions, i.e. the physical entity, virtual model and connection,
and is characterized by the physical–virtual interaction. It has been
applied to product design and production [4,5]. Based on this, an
extended five-dimension architecture DT is proposed in this paper,
adding DT data and services. Compared with Grieves’ architecture,
besides the physical–virtual interaction, the proposed model fuses
data from both the physical and virtual aspects using DT data for
more comprehensive and accurate information capture. It can also
encapsulate the functions of DT (e.g. detection, judgement and
prediction) from the services for unified management and on-
demand usage [6].

According to the proposed five-dimension architecture, Fig. 1
shows the proposed DT for complex equipment, which can be
depicted as in the following expression,

MDT ¼ PE; VE; Ss; DD; CNð Þ ð1Þ
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where PE refers to the physical entity, VE is the virtual equipment,
Ss stands for services for PE and VE, DD refers to DT data, and CN is
the connection among PE, VE, Ss and DD. To illustrate the proposed
DT for complex equipment, a wind turbine (WT) is considered in a
case study.

2.1. Physical entity model (PE)

Generally, PE consists of the various functional subsystems and
sensory devices. Subsystems perform the predefined tasks during
operation and sensors collect the states of the subsystems and
working conditions. Malfunctioning of any part may cause the PE to
fail. In Fig. 2, the functional subsystems of a WT consist of the blade,
generator, gearbox, yaw system, etc. for transforming wind energy
intomechanical and electricalenergy. Sensorsaredeployedtocollect
the generator temperature, gearbox vibration, power output, etc.

2.2. Virtual equipment model (VE)

VE is a high fidelity digital model of the PE, which integrates
multiple variables, scales and abilities of the PE to reproduce its
geometries, physical properties, behaviours and rules in the virtual
world. VE is modelled as follows,

VE ¼ ðGv; Pv; Bv; RvÞ (2)

where Gv, Pv, Bv and Rv, stand for the geometry model, physics
model, behaviour model and rule model, respectively. The
modelling of VE is interpreted as follows, combining with the
construction of the virtual WT model in Fig. 3.

Gv is constructed as a 3D solid model. The WT components (e.g.
gearbox, blade and shaft) are assembled using a commercial CAD
modelling software.

Pv simulates the physical properties of the PE. For the WT, blade
deformation, gear tooth stress and bearing temperature, etc. can be
simulated in this level using the finite element method (FEM).

Bv describes the behaviour of the PE governed by the driving
factors (e.g. control orders) or disturbing factors (e.g. human
interferences). Behaviour of the WT includes power generation,

yawing, pitching, untwisting, etc. Power generation is a function of
the wind speed and power transmission efficiency, while yawing is
expressed as the relation among the yaw angel (’y), yaw rate (vy),
and yaw error (err) [7].

Rv includes rules of constraints, associations and deductions.
The rules work as the ‘brain’ to make the VE judge, evaluate,
optimize and/or predict. For the WT, constraints for the wind speed
can be simulated through force analysis and associations of
parameters can be mined from cloud data using neural network.

By the constructed VE, Gv, Pv, Bv and Rv are coupled in functions
and structures to form a complete mirror image of the PE.

2.3. Services model (Ss)

Ss includes services for PE and VE. It optimizes the operations of
the PE, and ensures the high fidelity of the VE through calibrating
the VE parameters during its running to sustain its performance
with the PE. Ss consists of elements as in (3), which describes the
function, input, output, quality and state of services. Ss can be
scheduled to meet the demands of the PE and VE.

Ss ¼ ðFunction; Input; Output; Quality; StateÞ (3)

Take the power output monitoring service for the physical WT
model as an example. It can be represented as Ss_monitor = (Power
output monitoring, (wind speed, power output of physical WT,
power output of virtual WT), power condition, (time, cost,
reliability), (work, idle, failure)).

2.4. DT data model (DD)

DD includes five parts as denoted in (4),

DD ¼ ðDp; Dv; Ds; Dk; Df Þ (4)

where Dp is the data from the PE, Dv is the data from the VE, Ds is the
data from the Ss, Dk represents the domain knowledge, and Df

denotes the fused data of Dp, Dv, Ds and Dk. DD includes data from
both physical and virtual aspects as well as their fusion, which
enriches the data greatly. Fig. 4 shows the DD of the WT.

2.5. Connection model (CN)

CN includes six parts as expressed in (5),

CN ¼ CN SD; CN PD; CN VD; CN PS; CN VS; CN PVð Þ ð5Þ

where CN_SD, CN_PD, CN_VD, CN_PS, CN_VS, and CN_PV denote the
connection between Ss and DD, PE and DD, VE and DD, PE and Ss, VE
and Ss, PE and VE, respectively. Each connection (denoted as
CN_XX) is bidirectional and the delivered data is modelled in (6).

CNXX ¼ ðDatasource; Unit; Value; Scope; Sampling intervalÞ (6)

Take CN_PV for the WT as an example. Data from the physical
WT (e.g. yaw angle) is expressed as CN_PV_yaw_angle = (Physical
WT, degree, 10, 0-1080, 10s). Order from the virtual WT (e.g. yaw
rate) is denoted as CN_PV_yaw_order = (Virtual WT, rad/s, 8.7e-3,
0-(1.7e-2), 10s).

Fig. 1. Five-dimension DT model for complex equipment.

Fig. 2. Physical WT model.

Fig. 3. Virtual WT model.

Fig. 4. DD of the WT.
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