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1. Introduction

Variable pitch cutter is a good choice to improve productivity,
but not in any extent as sometimes suggested by industrial
commercial cutting tool brochures. In contrast, it is known [1] that
the specific pitch angles need to be tuned to achieve real
improvement. The tuning is based on taking into account the
surface regeneration effect between subsequent cutting edges by
considering corresponding delays in state variables [2]. The
irregular distribution of flutes perturbs the destabilizing regener-
ative effect and has the potential to increase the productivity of
milling operations.

The application of such cutters was already proposed by Hahn
[3] in 1952, and many studies have been published on the problem
since then. To maximize the stability in a certain range of spindle
speeds, the cornerstone is the selection of optimal pitch angles
between the cutting flutes [2]. The solution of [4] and its
improvements in [5] provides graphical ways to tune the variable
pitch angles. In [6], an initial stability calculation, while in [7], time
domain simulations were used to obtain the best design
parameters. Later, Budak [8] introduced a simple and effective
analytical design method for finding optimal pitch angles, which
was based on the zero order approximation (ZOA) of [9]. The
effectiveness of the method was verified by experiments in [1]. In
the work of Olgac and Sipahi [10], the cluster treatment of
characteristic roots was introduced as a unique scheme to
investigate the effect of variable pitch angles on dynamic stability
of milling. An iterative method based on averaged dynamics and

calculated by semidiscretization was presented in [11], which
improved the results of [8]. While most of the above mentioned
techniques are based on analytical/semianalytical approaches that
do not take into account the time dependency of directional factors
in milling operations, the time domain based solutions of [12,13]
and [14] can overcome these limitations of ZOA.

The goal of this work is to go beyond the existing methods and
to present the maximum what these special cutters can achieve.
The idea is similar to the one introduced in [11], namely to build up
a numerical iterative tuning scheme, but this time accurate time
dependent dynamics and accurate frequency prediction are used.
The relevance of precise variable pitch tuning is emphasized by
presenting also the worst possible tuning that can occur as a result
of accidental tool selection. The resultant ultimate tuning is
validated by a laboratory and an industrial test. A special kind of
period doubling (flip) dynamic stability loss is also observed, which
is a direct consequence of the perturbed but still periodic
regeneration effect of variable pitch cutters. This provides further
qualitative validation of the applied model and methodology.

2. Milling model in short

In this section, a brief introduction is given to the mathematical
formalism to be used in the optimization scheme of pitch angles. In
standard mechanical models, the dynamics of the chip formation
process is described by means of the empirical specific cutting
force characteristics f(h), where the most relevant parameter is the
chip thickness h [15]. Its momentary value h � nT(Dr + vftex)
carries the dependency on time t through the local normal vector n
at a given cutting edge and the regeneration Dr(t) = r(t) � r(t � t),
with r = col(x, y, z) denoting the mill centre position. The delay t
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Variable pitch milling cutters intend to increase performance, but off-the-shelf cutters do not ensure this
generally. Depending on the milling process they are selected for, they can perform better or even worse
than uniform pitch cutters do. Improved performance can be guaranteed by considering the reflected
dynamic behaviour of the machine/tool/workpiece system. This work presents the achievable upper and
lower capability bounds by introducing so-called stabilizability diagrams of a hypothetical variable pitch
milling cutter that is tuned continuously along the stability boundaries. Robustly tuned milling cutters are
designed for selected spindle speed ranges, which are experimentally tested both under laboratory and
industrial conditions.
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connects the present and past tool motions to the secondary feed
motion of velocity vf in the direction ex.

In this manner, the cutting force acting on the tool of Z cutting
edges is determined as the sum of the specific forces originated in
the local momentary chip thicknesses hi and accumulated along
the axis z of rotation till the depth of cut a (see [16]):

Fðt; rðtÞ; rtðtlÞÞ ¼
XZ

i¼1

Z a

0
giðz; t; rðtÞ; rtðtiÞÞdz; ð1Þ

gi (z,t,r(t),rt (ti)) = � g (’i,z,t) T(’i,z,t) f(hi(z,t,r(t),rt (ti)))/sin ki (z) if
’i,z,t: = ’i (z,t). The tool considered here has constant helix angle hi

(z) = :h, lead angle ki (z) = :k, and radii Ri (z) = : R = D/2, so the
corresponding trigonometric expressions are all included here in
the geometric transformation matrix T (see [16]). The position
angle of the ith edge is ’i (z,t) = V t + S

i�1
k¼1 ’p,k � (z/R) tan h, where

’p,i’s are the pitch angles and V (rad/s) = (2p/60) n (rpm) is the
spindle speed. The actual form of the screen function g is given in
[16] by means of the enter and exit angles of the milling process.
Finally, the notation rt (tl): = r(t � tl) is used in (1) where tl
corresponds to the lth tooth pass time l = 1, . . . , Nt where Nt is the
number of different constant delays (Nt � Z; for example, Nt = Z/
2 for alternated pitch angles and Nt = Z for incremental ones).

The dynamics of the system is considered to be linear with
damping ratios jk, natural frequencies vn,k and mass normalized
modal transformation matrix U, which are determined by fitting
the measured frequency response functions (FRFs) H(v) (m/N).
Then, H(v) � U(jvI � [lk])�1UT with lk = � vn,k jk � jvn,k

(1 � jk
2)1/2. The nonlinear periodic forcing in Eq. (1) induces time

periodic stationary solution rp(t) = rp(t + Tp) with principle time
period Tp = T/N, where N = Z/rank [’p,(k + l � 1) mod Z]k,l = 1, . . . , Z and
T = 2p/V. It is important to emphasize that Tp is not equal to the
tooth passing period TZ = T/Z. Solution rp can be calculated by
boundary value solvers for DDEs [17].

The stability of stationary cutting is determined by introducing
the perturbation x as r = rp + x in order to have the complex modal
coordinates u by col(x, _x) = col(U, U[lk])u. This results in the linear
time periodic DDE:

_uðtÞ � ½lk� uðtÞ ¼ UT
XZ

i¼1
BiðtÞðxðtÞ � xðt � tiÞÞ; ð2Þ

where Bi (t) � Bi (t + Tp) = �R
a g (’i,z,t) T(’i,z,t) Kc(hi,p(z,t))/sin k dz

the momentary cutting coefficient is Kc = df/dh at the stationary
chip thickness hi;p z; tð Þ ¼ nT(’i,z,t)(rp(t) � rp,t (ti) + vf ti ex). Deter-
mining the Floquet multipliers m using a time domain based
method like semidiscretization (SD) in [18], decaying/growing
(�ln |m|) and frequency (�(ffm + 2pk)) properties of the solutions
of (2) can be calculated, and the stability lobe diagrams (SLD) can
also be determined in the parameter space. The same SLD can be
obtained by the multi-frequency approach, too (see [19]).

Considering linear specific cutting force characteristics f(h)
= Ke + Kc h and taking time average over the principle period Tp, a
simplified single frequency representation can be derived (see
details with ZOA in [8]):

ðI � a Kc;tH ðvÞ
XNt

l¼1
ð1 � e�j v tl Þ A0=sin kÞ X0 ¼ 0 ð3Þ

with A0 = sin k
R
Tp
Si Bi (t) dt/a/Tp/Kc,t.

3. Tuning strategies

One-parameter optimizations are introduced (Fig. 1e) in order
to compare the effectiveness of different algorithms. These
showcases consider Z = 4 tooth cutters. First, alternated pitch
angles [20] are used with ’p,i = (’p,1, ’p,1 + D’p, ’p,1, ’p,1 + D’p),
where N = 2 and Nt = 2. Second, the so-called linear variation is
used with ’p,i = (’p,1, ’p,1 + D’p, ’p,1 + 2D’p, ’p,1 + 3D’p), where
N = 1 and Nt = 4.

Classical tuning strategies are based on the regenerative phase
shift ei defined between the just evolving and the past surface

segments cut by the ith tooth. Thus, ei = vti, where ti = ’p,i/V (see
Fig. 1ab), which gives ei = (v/V) ’p,i.

The original graphical method for edge-space-tuning presented
by Slaviček in [4] is based on the one-dimensional (like x) version
of (3) after substituting H(v) = r(v)ejc(v). On the unfolded (planar)
geometric arrangement of the variable pitch milling tool, Slaviček
derived a formula (see Fig. 1ai) by introducing an average
regenerative phase e = (e1 + e2)/2 and average phase difference
D = (e2 � e1)/2. He showed that a solution (graphical intersection)
is least possible if cos D � 0. Based on this condition, the cutter can
be designed analytically for the alternated geometry with
methodology AA in Fig. 1d.

Tuning based on simplified but real circular tool geometry is
presented by Budak in [8] with time-averaged dynamics based on
the eigensolution of (3) for L(v) = LR(v) + jLI(v) (see Fig. 1aii). A
chatter frequency v-dependent solution is obtained analytically
for the axial depth of cut a based on the assumption to be real
valued. Mathematically, the solution is given by forcing S(v) = Sl

sin vtl to be minimal (or zero in extreme case). Budak’s approach
gives Slaviček’s solution for alternated pitch variation; however, by
neatly choosing the variation of the regenerative phase difference
De, S can be zero analytically for linear pitch variation, too, using
the approach of Budak (see AL in Fig. 1d).

The presented brute force (BF) (see Fig. 1b) algorithm can be
considered as a general method to increase stability boundary of
cutting processes. The basic idea is to minimize the magnitude of
the ‘largest’ Floquet multiplier mmax, and to find the optimal mopt of
m for any given set of technological parameters. Here, the
optimization is performed for the regenerative phase difference
De and not for the actual geometric pitch angle differences D’p as
it was introduced in [11]. Keeping feasibility conditions, the
optimum is found by bisection algorithm up to a given tolerance.

Both alternated and linear variation topology can be optimized
with BF algorithms denoted by BFA and BFL, respectively, among
the methods in Fig. 1d. In order to highlight the importance of
precise pitch angle tuning further, worst case scenarios are also
presented for both topologies with BFAW and BFLW in Fig. 1d,
where the largest multiplier in magnitude is maximized (mwrst).

4. Stabilizability diagrams

In order to have comparable results, all methods introduced in
Fig. 1d were computed using SD. After having the multipliers, the
vibration frequencies v are calculated, then the method has been
applied analytically in AA and AL, and numerically in all BF cases.
This way, the best achievable performance within stability can be

Fig. 1. The basic idea of classical analytical methods and the proposed numerical
method are presented in a) and b), respectively. c) The sketch of the variable pitch
cutter producing the ideal regenerative phase shift. Abbreviations for different
methods for special pitch geometries e) are presented in d).
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