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A B S T R A C T

Nuclear resonance fluorescence (NRF) is a photonuclear interaction that enables highly isotope-specific mea-
surements in both pure and applied physics scenarios. High-accuracy design and analysis of NRF measurements
in complex geometries is aided by Monte Carlo simulations of photon physics and transport, motivating Jordan
and Warren (2007) to develop the G4NRF codebase for NRF simulation in Geant4. In this work, we enhance the
physics accuracy of the G4NRF code and perform improved benchmarking simulations. The NRF cross section
calculation in G4NRF, previously a Gaussian approximation, has been replaced with a full numerical integration
for improved accuracy in thick-target scenarios. A high-accuracy semi-analytical model of expected NRF count
rates in a typical NRF measurement is then constructed and compared against G4NRF simulations for both
simple homogeneous and more complex heterogeneous geometries. Agreement between rates predicted by the
semi-analytical model and G4NRF simulation is found at a level of 1%∼ in simple test cases and 3%∼ in more
realistic scenarios, improving upon the 20%∼ level of the initial benchmarking study and establishing a highly-
accurate NRF framework for Geant4.

1. Introduction

In recent years, nuclear resonance fluorescence (NRF)—the re-
sonant absorption and re-emission of photons by a nucleus—has been
widely-proposed as a powerful isotope-specific assay technique.
Nuclear weapon treaty verification [1,2], spent fuel measurement [3],
and cargo scanning [4,5] systems use NRF as an active interrogation
technique to discern the isotopics of or detect the presence and quantity
of special nuclear materials. In the domain of pure physics, NRF is
useful as a probe of nuclear structure across a broad array of isotopes
[6].

For realistic experimental geometries, expected NRF count rates
may be calculated through Monte Carlo simulation of photon and
electron transport and physics. The G4NRF [7] package for the Geant4
[8] Monte Carlo toolkit was developed by Jordan and Warren at Pacific
Northwest National Laboratory, while NRF data libraries for MCNPX
[9] have been developed by Wilcox et al. at Los Alamos National La-
boratory [10]. In the former case, NRF rates predicted by the G4NRF
code were initially only benchmarked against theory to within 20%∼
and validated against data to within a factor of 3∼ [11]. Moreover, the
initial study made a number of mathematical simplifications in its
analytical model: it neglected non-resonant photon attenuation (e.g.,
Compton scattering), assumed the emission of NRF photons to be

isotropic, and implemented a Gaussian approximation to the NRF cross
section that is not valid for thick targets or large resonance widths. This
benchmarking study accounts for these three effects and therefore
presents improved benchmarking of the G4NRF code against a more
accurate semi-analytical radiation transport model. To this end,
Section 2 first constructs this high-accuracy semi-analytical model for
the NRF photon count rate observed by a detector. A series of
Geant4+G4NRF Monte Carlo simulations is then compared against the
semi-analytical model in Section 3. Section 4 concludes with a
discussion of results.

2. Semi-analytical model for NRF count rates

In this section we present a model for predicting the absolute NRF
count rate observed by a detector in a transmission NRF measurement.
The model is based upon the NRF cross section and radiation transport
development previously given in the literature (primarily Refs.
[12,13]), but expands the treatment to multiple-isotope targets and
practical considerations for high-accuracy computation. First, we derive
the NRF cross section necessary for both the semi-analytical and G4NRF
rate predictions. We will then show that the shape of the NRF cross
section can influence NRF count rate predictions substantially for thick
targets, motivating the derivation and use of highly accurate cross
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section formulae. We then apply the NRF cross section to the radiation
transport problem that describes a generic transmission NRF
measurement in order to construct a semi-analytical model for the ex-
pected NRF count rate. Such semi-analytical calculations necessarily
involve approximations to keep the mathematics tractable, and thus are
somewhat limited in the experimental complexity they can accurately
model. However, they offer a powerful tool for investigating the de-
pendence of NRF count rates on various physics or geometrical
parameters without running computationally expensive simulations,
and are useful in verifying the implementation and accuracy of the
G4NRF code.

2.1. NRF cross sections

Nuclear resonance fluorescence (NRF) describes the X γ γ( , )′ X reac-
tion in which a nucleus X with resonance energy Er resonantly absorbs a
photon of energy E Er≃ , thereby transitioning from its ground state to
the excited state at Er [6,12]. The excited nucleus subsequently decays
after time (fs)O , re-emitting a photon of energy E E′ ≃ (neglecting the
relatively small nuclear recoil given later in Eq. (10)) if the decay is
direct to the ground state, or a lower energy E E Ej′ ≃ − if the decay
proceeds first through an intermediate level j.

The NRF cross section (at temperature T 0= K) for absorption
through an isolated resonance at energy level Er followed by decay to
an energy level Ej may be found (using, e.g., perturbation theory [14])
to follow a single-level Breit-Wigner profile [12]:
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The gr term is a statistical factor arising from the number of available
nuclear spin and photon polarization states, given by
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where J0 and Jr are the ground-state and resonant-level nuclear
spins, respectively. The Γr,0 and Γr j, terms denote the partial widths for
decay from the level at Er to Ej, while the Γr is the total width of the
level, i.e., the sum of the partial widths. For most calculations in this
work, it is more convenient to work with the cross section for absorp-
tion only,
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which differs from the absorption+ decay cross section only by the
level’s branching ratio b Γ /Γr j r j r, ,≡ , with the normalization condition

Γ Γj r j r,∑ = , i.e., b 1j r j,∑ = .
At non-zero temperatures, the NRF absorption cross section is most

accurately described by a Doppler-broadened version of the Breit-
Wigner distribution in Eq. (3):
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which integrates over the thermal distribution of speeds of the target
nuclei [12]. Here we have suppressed the temperature subscript for
brevity, replaced the E1/ 2 term with E1/ r

2 (valid near the resonance),
and defined

x E E2( )/Γ ,r r≡ − (5)
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where is the width of the level after Doppler broadening, with
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where k is Boltzmann’s constant, T is the absolute temperature, and Mc2

is the rest-mass energy of the nucleus.1The NRF cross section given by
Eq. (4) is implemented in both the semi-analytical NRF rate model in
the next section and the G4NRF Monte Carlo code.

A useful measure of the ‘strength’ of a resonance is the integrated
cross section,
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which can be found by approximating c E c E(ℏ / ) (ℏ / )r
2 2≃ and E Γr r≫

then integrating Eq. (3) over E [0, )∈ ∞ , or by approximating
E kT McΔ 2 / Γr r

2≃ ≫ then integrating Eq. (4) over x ( , )∈ −∞ ∞ . As
will be shown later, the expected NRF count rate in an experiment is
proportional to the integrated cross section in the thin-target limit.

The fundamental parameters required in Eq. (4)—and thus de-
termined for each resonant level in an NRF cross section measur-
ement—are the level’s width Γr and set of branching ratios br j, . The NRF
transitions studied in this work are all transitions directly to the ground
state, such that only the branching ratios to the ground state br,0 are
necessary. Cross section parameters reported by different experiments
(or tabulated in the ENSDF databases, e.g., Ref. [15]) can vary drasti-
cally, however. The ground-state branching ratio of the U-238
2.245MeV level, e.g., differs by 30%∼ between ENSDF and Ref. [3],
while its width Γr differs by more than an order of magnitude. Similarly,
the values of Γ /Γr r,0

2 reported by Ref. [3] and Ref. [16] differ by 25%∼ in
the U-238 2.209 MeV line, and by a factor of 6 in the U-238 2.468 MeV
line. These discrepancies may introduce systematic uncertainties much
larger than our desired accuracy for the verification study; for con-
sistency, then, both the calculations and simulations in this work use an
assumed set of cross section parameters (in isotopes relevant to nuclear
security applications—see Refs. [1,2]) from various references as shown
in Table 1. For the U-238 resonances, preference is given to experi-
mentally-determined (i.e., not ENSDF-evaluated) data; specifically, the
integrated cross sections and ratios of widths in Table 1 of Ref. [3]
(which derive from Ref. [17]) are used to infer values of Γr and br,0 for
the three major U-238 resonances. No NRF data on Pu-240 exists in
ENSDF, so values of Γr and br,0 are similarly inferred from experimental
data in Table II of Ref. [18]. For the 2.212 MeV resonance of Al-27, the
value of Γr is determined from the lifetime listed in Table 27.4 of Ref.
[19] and br,0 is found using Table 27.6 of the same work. We note that
while some of the U-238 cross section parameters may vary sig-
nificantly across references, the Al-27 parameters generally agree to
within a few percent. Since the Γr and br,0 values read by G4NRF are
stored in plaintext files, the user may configure G4NRF to use a custom
set of cross section parameters.

Due to conservation of energy and momentum, a free nucleus un-
dergoing NRF will recoil with kinetic energy Erec determined by the
Compton-like formula
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where χ is the photon scattering angle relative to its incident direction,
and E Mc2≪ has been applied in the Taylor expansion. For nuclei
bound in an atomic lattice, Erec may be large enough to overcome the
lattice displacement energy Ed ( 10≳ eV in pure metals [20]) in which
case the kinetic energy transfer is E Edrec− . If the value of Erec for an

1 For greater accuracy, the temperature T may be replaced by the ‘effective’
temperature [12]
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where the absorber’s Debye temperature θD accounts for the effect of the atomic
lattice on the ideal Maxwell-Boltzmann distribution of speeds. This change
propagates through to the Δ of Eq. (7) and thus the t of Eq. (4). G4NRF uses Teff

if θD is known, and defaults to T 300= K otherwise.
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