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A B S T R A C T

The diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD) was first interpreted only in terms
of elastic diffraction from a perfectly periodic rigid surface with atoms fixed at equilibrium positions. Recently, a
new approach has been proposed, referred here as the quantum binary collision model (QBCM). The QBCM takes
into account both the elastic and inelastic momentum transfers via the Lamb-Dicke probability. It suggests that
the shape of the inelastic diffraction profiles are log-normal distributions with a variance proportional to the
nuclear energy loss deposited on the surface. For keV Neon atoms impinging on a LiF(001) surface under an
incidence angle θ, the predictions of the QBCM in its analytic version are compared with numerical trajectory
simulations. Some of the assumptions such as the planar continuous form, the possibility to neglect the role of
lithium atoms and the influence of temperature are investigated. A specific energy loss dependence ∝E θΔ 7 is
identified in the quasi-elastic regime merging progressively to the classical onset ∝E θΔ 3. The ratio of these two
predictions highlights the role of quantum effects in the energy loss.

1. Introduction

The energy loss of keV ions at solid surfaces has been investigated in
detail both from the theoretical and experimental points of view. One of
the important regimes at low energy is the nuclear regime where
electronic excitations play a minor role. At grazing angle, collisions of
keV atoms can be gentle enough to allow scattering in a quantum re-
gime as illustrated by clear diffraction features (see e.g. [1] for a re-
view). The identification of elastic fast atom diffraction, characterized
by the absence of energy exchange with the surface, was predicted al-
most ten years ago [2] but experimental evidences of a well defined
Laue circle with diffraction spots size limited by that of the primary
beam were scarce and hardly quantified [3–5].

A first attempt to quantitatively describe both the elastic and in-
elastic diffraction of fast atoms, together with the associated line pro-
files, was recently proposed [6]. The succession of binary collisions
with surface atoms along the classical trajectory was described using an
idealized trajectory giving close analytic form of the energy loss and
inelastic profiles. Starting from the quantum properties of the in-
dividual surface atoms considered as harmonic oscillators during a
distant binary collision, the model offers a smooth transition between
the quantum and classical regimes with specific predictions on the
onset for the nuclear energy loss.

After a short presentation of the QBCM, some of its assumptions are
analyzed with more realistic trajectory simulation using the Ne-LiF

system to better understand the limitations. Accordingly less im-
portance will be given to an a priori justification since these can be
discussed in view of the simulations.

2. Established theory

2.1. Elastic diffraction; the rigid lattice and the potential energy landscape

Theoretical approaches to GIFAD consider the surface as an ideal
system with atoms standing still at their equilibrium positions so that
the potential energy landscape (PEL) of the helium-surface is perfectly
periodic. The dynamics of the projectile atomic wave-function on this
PEL, i.e. the diffraction, has been modeled via wave-packet [10,11],
transition matrix [2], semi-classical trajectories [1,12], Bohmian tra-
jectories [13], close coupling [8,14] or multi-channels Hartree methods
[15].

2.2. Reduced dimension of the PEL

Elastic diffraction of fast atoms of energy E impinging on a surface
with an incidence angle θin, was early understood[10] and described by
a 2D problem where an effective particle with perpendicular energy

=⊥E E θsin in evolves in a 2D PEL ∫=V y z V x y z dx d( , ) ( , , ) /D D x2 3 . Here x is
taken along the low index crystal axis as depicted in Fig. 1 and dx is the
period along x. This axial channeling approximation (ASCA) was
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established with quantitative criterion well satisfied for grazing in-
cidence keV projectile and small lattice units [14,15]. Experimentally
this is evidenced by the presence of only one Laue circle.

Here we focus on inelastic processes which are described as in-
dividual binary collisions along the projectile’s travel along x, i.e. pre-
cisely the direction neglected in ASCA. We assume that the mean
properties of these trajectories are well estimated by the trajectory on
the mean planar potential defined as

∫ ∫=V z V x y z dxdy( ) ( , , )D d d D1
1

3x y
where dy is the period along the

direction y. Assuming an exponential form for ∝ −V z e( )D
z

1
Γ , the tra-

jectory z t( ) is analytic and so are its first and second derivatives p t( )z
and p ṫ ( )z describing the momentum transfer to the surface per unit time
or unit length. Considering that only one atom with mass m per lattice
unit a receives the exchanged momentum, an energy deposition curve
can be defined and integrated to produce an energy loss [2,16].

=E μE aθ2
3

Γ .loss in
3

(1)

where =μ M m/ with M the projectile mass and m the mass of a surface
atom. The energy deposition curve has a quasi-gaussian profile [6] and
its full width at half maximum can be used to define the trajectory
length ∝L θ1/ [10]. This important parameter L can be expressed as
the number of most active binary collisions. If one assumes that all
collisions are equivalent, the incident beam is deflected by an angle

= +θ θ θ2 in in out , arising from a series of Neq equivalent deflections by ,
each of them producing a recoil energy =E μEδθr

2 with
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Γ
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2.3. Thermal movement of the surface atoms

At finite temperature the crystal hosts a population of phonon
giving rise to movement with an amplitude = 〈 〉σ zz

2 2 .
Considering the coupled oscillators and averaging over the thermal

distribution, the z distribution is gaussian with [17]
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where kB is the Boltzmann constant,TD is the Debye surface temperature
so that =ω k Tℏ B D is the energy of a vibration quantum of the local
Debye oscillator. Interpreting = 〈 〉σ zz

2 2 as the variance of the prob-
ability to find a surface atoms away from the surface plane, the surface
is far from being as flat as idealized in the rigid lattice model. These
displacements induce deviation from the ideal trajectory and affect the
coherence of the diffracted signal.

As often encountered in quantum mechanics, the situation can be
approached in two ways, either in the real space as summarized below
or in the momentum space described in the next section. The real space

approach considers the coherence of the waves emitted by an ensemble
of diffraction centers distributed around their equilibrium positions. In
thermal energies atom scattering or in Xray diffraction, where the
scattering takes place on a single atom, this gives rise to the
Debye–Waller factor = ∼−〈 〉 − 〈 〉DWF e ek z k z( )z z2 2 2 for the specular reflec-
tion of a wave-vector kz. In GIFAD, the momentum exchange is spread
along the successive tiny collisions with the surface atoms and each one
only contributes with a dephasing =dϕ δk zz where δkz can be esti-
mated as =δk k N2 /z z eq. All these contributions add up incoherently so
that the overall dephasing is reduced. The specific DWF for GIFAD is
much more favorable [16,2] −e k σ N/z z eq2 2

, indicating that the scattering
takes place on a row of Neq active atoms reducing by Neq the amplitude
of the thermal oscillations.

In both cases, the elastic signal corresponds to atoms at their equi-
librium position, and its intensity is attenuated by thermal displace-
ment. The fate of the incoherent signal is however less clear. Where
does it appear? Under what conditions the diffraction features remain
visible? In other words, how can we describe diffraction pattern in the
inelastic regime? These questions are easier to address with the mo-
mentum approach at the heart of the binary quantum collision model.

3. The quantum binary collision model QBCM

The momentum approach describes the elastic scattering on the
surface as a series of elastic collisions with the quantum oscillators. If a
collision is elastic, the trajectory will again correspond to the classical
trajectory associated with the center of the harmonic oscillator i.e. as if
the rigid lattice description with motionless atoms at their equilibrium
positions were real. If q is the momentum transferred to this surface
atom, then the probability pe to leave the wave function unchanged is

= 〈 〉p ψ e ψ| | | |e
iqz 2. Using the Bloch theorem [18] 〈 〉 = − 〈 〉e eiqz q z1

2
2 2 , the

elastic probability is again the standard DWF. For an isolated oscillator
with pulsation ω in its ground state the probability is = −p ee

E ω/ℏr with
=E q mℏ /2r

2 2 the associated recoil energy. This is equivalent to the
Lamb-Dicke probability of recoilless emission which means that in a
trapping potential, the wave function may absorb a momentum q
without exchanging the recoil energy Er . In this respect, Er is only a
virtual recoil energy.

Taking into account the actual value of 〈 〉z2 on the surface given in
Eq. (3), pe reads
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The product probability Pe that all binary collisions are elastic fac-
torizes to outline the sum of all the virtual recoil energies =E EΣloss j r j
along the trajectory
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If a collision with the surface atom is inelastic, different properly-
weighted initial and final wave functions have to be evaluated. We can
also consider that the momentum dispersion induced by the inelastic
collision can be evaluated from classical mechanics with thermally
displaced atoms, as if the inelastic collision would project the wave
function to its spatial probability distribution = 〈 〉P z z( ) | Ψ| |Ψ |2 which is
the gaussian distribution of Eq. (3). Since P z( ) is centered around the
equilibrium value, the median value of the angular distribution P θ( )i is
the elastic value θe with a, yet unknown, width σθi. Considering these
inelastic angular straggling as independent, their contributions are
added quadratically for each inelastic collision along the trajectory. The
individual inelastic contributions σθi can be calculated numerically or,
within few assumptions on the form of the interaction potential, they
can be evaluated analytically.

Fig. 1. Schematic view of keV Ne atoms impinging on the LiF(001) surface.
The diffraction pattern is recorded on an detector [7] placed ∼ 1 m down-
stream. The elastic diffraction spots are localized on the Laue circle (white line)
while the inelastic intensity shows elongated streaks around the Laue circle.
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