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This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its
possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential
was constructed by using the Doyle-Turner, ZBL, and Moliére proton-carbon interaction potentials. The thermal

motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton tra-
jectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used
to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the
introduced mapping including its multiplicity and the rainbow singularities were used to explain important
features of the obtained angular distributions of transmitted protons.

1. Introduction

Graphene is considered as one of the most promising material in the
nano-technological applications nowadays. Probably the best definition
of the graphene can be find in Ref. [1] which reads: ”Graphene is a
single atomic plane of graphite, which is sufficiently isolated from its
environment to be considered free-standing”. In Ref. [2] its band
structure was theoretically investigated almost 70 years ago, however,
it was experimentally isolated only recently. Graphene has many in-
teresting physical properties [3]. A lot of them have distinctive topo-
logical/morphological origin. Some examples are: the stability of the
Dirac cones, the states exhibiting Berry phase of 0 or 7 rad only, the
quantum Hall effect etc. An excellent review of graphene properties
from this point of view is presented in Ref. [4].

The rainbow scattering is a physical effect with distinct morpholo-
gical character too. It occurs when different incoming particles are
scattered at the same angle, implying that a mapping of the scattering
angles to the particle initial positions is a multi-valued one. The con-
tinuity of mapping, on the other hand, guaranties that there are lines in
the angular space across which the multiplicity changes dis-
continuously.

The rainbow effect was observed in many areas of physics. Authors
of the Ref. [5] were the first to predict its existence in the semi-classical
particle scattering. It was also observed in: nucleus-nucleus collisions
[6-8]; electron or ion collisions with atoms or molecules [9,10]; and in
the ion scattering from the surfaces [11,12]. The author of the Ref. [13]
showed that ion channeling through very thin crystal could be con-
sidered as ion scattering through the macro molecule in which the
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rainbow scattering occurs. This effect was experimentally verified soon
after its prediction [14]. Later it was shown theoretically that the
rainbow effect exists also for ions channeling through very short carbon
nanotubes [15]. A comprehensive study of rainbows in crystals and
carbon nanotubes has been recently published [16]. Aims of the work
presented here are to show that the rainbow effect can occur in trans-
mission of protons through a graphene sheet and how this fact can be
used as a tool for investigation of the proton-graphene interaction po-
tential.

The central problem in the analysis of ion scattering is the choice of
appropriate ion-atom interaction potential. Three commonly used po-
tentials are: Moliere [17], Doyle-Turner [18], and Ziegle-
r-Biersack-Littmark (ZBL) [19] potentials. Moliéres potential is derived
from the Thomas—Fermi statistical model of atom, as a simple analytical
approximation, where electrons are treated as constituting a free elec-
tron gas. It contains no information about the atomic shell structure and
because of its statistical nature the difference between model and the
actual potential is the largest for the light atoms [20]. However its
simple scaling with atomic number makes it still appealing for ob-
taining basic insight into scattering processes.

The Doyle-Turner’s potential is based on the relativistic
Hartree-Fock model of atom developed by Grant and Coulthard
[21,22]. In this model the magnetic interactions between electrons,
retardation effects, finite radius of the nucleus, and all instantaneous
correlations in positions of electrons and correlations between electrons
of opposite spin are neglected. It was used to calculate spherically
symmetrized total charge densities, and atomic potentials of various
atoms and ions. Doyle-Turner potentials are the simple analytical
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approximations of these potentials [18]. It is best suited to describe
electron-atom or proton-atom collisions.

In the Ziegler-Biersack-Littmark theory interatomic potentials are
calculated starting from the spherically symmetrized charge distribu-
tions of atoms obtained by the Hartree-Fock approach. The total energy
is the sum of the Coulomb interaction energy and a correction required
by the Pauli principle due to the overlapping of the electron clouds.
Although, the numerical potential is impractical for use in the Mote-
Carlo simulations of the atom-atom, and atom-ion collisions, by using a
fitting procedure, the authors have found the simple analytical ap-
proximation of the universal screening function, with the screening
length dependent on atomic numbers of colliding atoms [19]. In-
troduction of the analytical approximation is motivated by wish to
obtain a simple expression for universal nuclear stopping power of
reasonable accuracy [19].

Neither potential is able to describe the static polarization effects of
electron gas, or corresponding deformations of the electron wave-
functions.

The correct choice of interaction potential is especially important
for accurate description of the rainbow channeling effect, where well
defined ion trajectory is a consequence of large number of correlated
small-angle collisions.

It has been shown that description of the ion-atom interaction by the
Moliére potential with screening length determined only by target atom
atomic number, gives good agrement with the channeling experiments
[23]. This was explained by fact that rainbow lines, which dominantly
determine the shape of measured distributions, are generated by ions
scattering far from atomic strings [24]. Therefore, modification of the
screening length, required by formation of the joint electron cloud in
the head-on collisions [25], does not influence channeled ions moving
far form atomic strings. Resolution and sensitivity of this early experi-
ments were not sufficient for observation of any structure in measured
distributions for larger scattering angles. It was observed recently [26]
in rainbow channeling of protons in very thin Si crystals, and explained
by the rainbow line generated by protons scattered near atomic strings
[27]. The analysis have shown that ZBL potential correctly reproduces
rainbow lines close to atomic strings while Moliére’s far from atomic
strings [16,28]. Moreover, authors of Refs. [16,28] have shown how
rainbow lines can be used for construction of proton-Si interaction
potential accurate for all the scattering impact parameters.

In this paper sensitivity of the rainbow lines on small changes of the
proton-carbon interaction potential will be demonstrated, proving that
rainbow scattering can be a valuable tool for studying the proton-
carbon interaction in the graphene.

2. Theory
2.1. Interaction potentials

In our analysis we have applied three commonly used approxima-
tions of the proton-carbon interaction potential energy for the con-
struction of the proton-graphene interaction potential energy (the po-
tential shortly further in the text). The first one was Doyle-Turner
potential [18]
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where p is the vector of the proton-carbon distance, p = lipll is its
norm, aPT =(0.07307, 0.1951, 0.04563, 0.01247)nm  and BT =
(0.369951, 0.112966, 0.028139, 0.003456) nm? are Doyle-Turner fitting
parameters for carbon atom, # is the reduced Planck constant, m is
proton mass and Z; = 1 is proton atomic number. The second one was
ZBL potential [19] which reads
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where a8 = (0.1818, 0.5099, 0.2802, 0.02817)  and g% =

(3.2, 0.9423, 0.4029, 0.2016) are the ZBL fitting parameters, ¢, is the va-
cuum permittivity, Z, = 6 is carbon atomic number, ¢ = 1.6:107"° C is
the elementary charge, azp, =(97%/128)'/3/(Z* + Z9*)ay is the
screening radius and a, = 0.0529 nm is the Bohr radius. The third one
was the Moliére potential V™ (r) [17] which is given by the equation
completely similar to the Eq. (2) in which a?B and g#PL were sub-
stituted with the Moliére fitting parameters «™ = (0.35, 0.55, 0.10) and
BM = (0.1, 1.2, 6.0), while a; needs to be substituted with the Firsov
screening radius ap = (972/128)Y3/(Z}/? + Z}/%)*2a, [25].

It has been assumed that thermal vibrations of the carbon atoms in
the graphene are random, isotropic, uncorrelated and that can be
adequately described by the Debye model [29,30]. The probability
density distribution of atom displacements from their equilibrium po-
sitions reads
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with a root-mean-square (RMS) value of displacements
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where M, = 12.01 is carbon atomic weight, m, = 1.6605-107%7 kg is
universal atomic mass unit, ©®p = 2000 K is the carbon Debye tem-
perature, kg = 1.3806-10723 J/K is Boltzman’s constant, T is the gra-
phene absolute temperature, and Dy is the Debye’s function. The ther-
mally averaged potential is then given by the expression
Vae) = [,V (o= B (%" )

For considered potentials the integral (5) can be evaluated analy-
tically. The straightforward evaluation shows that the thermally aver-
aged Doyle-Turner potential V;.” (o) can be obtained from the Eq. (1) if
BPT is substituted by B, = P + 87%;. The thermally averaged ZBL
potential V5 (p) reads
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where erfc stands for the complementary error function [31]. The
thermally averaged Moliere’s potential V! (o) is given by the same Eq.
(6) in which fitting parameters a8, B7BL, and azp; are substituted by
o, By, and ar respectively.

The proton-graphene potential is the sum of the proton-carbon po-
tentials that contribute to the scattering process. This sum should re-
semble the graphene’s geometric structure and its symmetry. The gra-
phene posses the translational symmetry with the rhombic Bravais
lattice, defined by the primitive vectors a; = (v/31/2, 31/2, 0) and
a, = (—+/31/2, 31/2, 0), where [ = 0.144 nm is the carbon—carbon bond
length. The repeating motif consists of two carbon atoms whose posi-
tions relative to the vertices of the unit cells are g, = (—1/2, 0, 0) and
g, = (I/2, 0, 0). This specific values of vectors a;, a3, g;, and g, result in
the Cg, point group symmetry relative to the center of graphene’s
hexagon [4]. If the coordinate origin is set to the most symmetric point
(the center of the hexagon), then the graphene potential reads

U =Y, Y Vallr + g + (m-1/2)a; + (m—1/2)a),
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