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A B S T R A C T

The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER)
prediction for aerospace systems, despite the growing number of issues impairing method’s validity when ap-
plied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method,
which can lead to a spread of several orders of magnitude in the subsequently calculated SER.

The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge
collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method,
the proposed model includes only two parameters which are uniquely determined from the experimental data for
normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions
during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of
the forecast.

1. Introduction

Today, the most common approach to estimation of single-event-
effect (SEE) rate (SER) uses the concept of total charge collection within
a limited sensitive volume [1,2]. The sensitive volume is typically
modeled as a rectangular parallelepiped (RPP) or, less frequently, as a
thin layer with a certain cutoff angle. To estimate SER, in addition to
sensitive volume dimensions, we also need to know the dependence of
SEE cross-section on linear transfer energy (LET). Usually, it is obtained
at normal ion incidence for several LET values and approximated by the
Weibull function.

Under this approximation, SER in the isotropic ion field with con-
stant LET is dependent only on change of the chord length (ion path)
within the sensitive volume. The experientially observed gradual in-
crease of the cross-section with increasing LET was explained by var-
iation in the energy needed for SEE. In our opinion, such a concept is in
total contradiction with SEE physical nature. In reality, the SEE
threshold energy stays nearly the same (within process variation
limits), but charge collection efficiency changes across the sensitive
volume. It is obvious that for SEE to occur a low-LET ion should hit
close to the charge collection node, but a high-LET ion may hit further
away from the node. This very consideration, rather than the spread of
sensitivity parameters, actually accounts for the shape of the cross-
sectional curve.

Such physical approach enables an entirely different method of SER
estimation. First, we build a model to describe SEE cross section vs. LET

based on physically valid assumptions. Then we have to account for
angular dependence to correlate the cross-section σ LET( )is in the iso-
tropic field, with the experiment.

In this case, SER can be estimated using a fairly simple equation:

∫=R σ LET ϕ LET dLET( )· ( )·SEE is z (1)

where ϕ LET( )z is the differential omnidirectional particle flux as a
function of LET, σ LET( )is is the SEE cross-section in the isotropic field.

Therefore, the main task is to obtain SEE cross-section dependence
on LET under the isotropic ion field σ LET( )is from the experimental
results at normal ion incidence.

2. Proposed method

2.1. Charge collection model

For single event upset (SEU), cross-section dependence on LET in
the isotropic radiation field can be obtained in diffusion approximation
neglecting drift collection processes [3–5]. This approximation holds
reasonably well at relatively high LET values, but the drift processes
may affect cross-sections at near-threshold LET values.

As the first step, we have to obtain the value of ionization response
of a separate sensitive element for different locations of charged par-
ticle track. This problem was solved for the structure shown in Fig. 1
[3]. For this model geometry, processes of charge collection by
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relatively deep well-substrate junctions play a crucial role. The pro-
posed ionization current model is based on the diffusion equation
solved under linear approximation with account for the well borders
effect.

The approximate equation for the diffusion current of the separate
junction with a center at = x yr ( , ,0) created by the point charge source
at = x y zr ( , , )0 0 0 0 can be presented in the form (Appendix A):
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where R is the p-n junction radius, D is the ambipolar diffusion coef-
ficient, Dm is the diffusion coefficient of minority carriers, q is the
elementary charge.

The equation for the diffusion current I can be derived from (2) by
integrating along the ion track with account for the linear density of
charge sources:
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where θ and φ are polar and azimuthal angles of the ion track, corre-
spondingly (Fig. 1); φ0 is the azimuthal angle of vector εr ; i0 is the mean
energy required to create an electron–hole pair. Ionization current
amplitude can be approximately described by the equation:
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where −r b1 2 is the impact parameter. Estimation of the current am-
plitude (4) is obtained under the assumption that the maximum value of
(3) depends primarily on the exponential term.

Eqs. (3) and (4) constitute the core of the proposed charge collection
model and were used to derive the expression for estimation of the
upset cross-section.

2.2. Cross-section calculation

The upset criterion plays an important role in determining the cross-
section of the effect. It is usually assumed that the critical value of a
quantity (current, voltage at the node or collected charge) has to be
exceeded for an upset to occur. In [3,5], the amplitude of the signal on
the internal RC circuit of the sensitive element is used as the criterion
quantity. In this case, the upset criterion can be represented in the
simplified form:
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where LETth is a threshold LET value. This is the LET that must be ex-
ceeded for a center =r( 0) hit to produce an upset.

Charge collected by the p-n junction is also often used as the cri-
terion quantity [2]. In this case, an approximate expression for the
charge collected by the separate junction with the center point at

= x yr ( , ,0) created by the point charge source at = x y zr ( , , )0 0 0 0 can be
found from (2):
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The asymptotic form of Eq. (6), valid for ≪R L, is the main equa-
tion of the point-node model [6,7]. The upset criterion, in this case, has
the form:

∫ ∫= >g r θ φ LET Q d Q d LETr s s s s( , , ) ( , ) / (0, ) th0 0 (7)

where integration is done along the ion track. It should be noted that
the approximate nature of (5)–(7) (due to neglection of the term in front
of the exponent) may lead to an additional error when determining the
cross-section of the effect in the near-threshold region.

The proposed approach to upset cross-section evaluation is based on
geometrical interpretation [3]. According to it, an upset occurs if the
sensitive p-n junction is located in some region near the ion track
(Fig. 1). The area of this region S depends on track parameters and the
chosen upset criterion. Based on statistical theory [8], it can be assumed
that for both regular and random placement of sensitive p-n junctions,
mean cross-section per bit is equal to S. So the problem of cross-section
estimation can be reduced to determining the area of the “critical” re-
gion where the cell upset criterion is met. This approach accounts for
both SEUs (if <S S0, where S0 is a cell area) and MCUs (if >S S0).
Using this approach, an equation for the cross-section can be obtained:
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where xΘ( ) is the Heaviside step function, and g r θ φ( , , ) is defined by (5)
or (7).

Eq. (8) takes the simplest form in case of normal incidence =I( 0).
For the first approach (5), the equation is:
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and for the point node model (7), it is approximately:
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Eqs. (8)–(10) contain only two unknown parameters (LETth and L or
Lt) which can be estimated based on the experimental data at normal
incidence =θ( 0). Also for the first approach, the cross-section curve
defined by (9) becomes a straight line in a special linearizing co-
ordinates LET σ(ln( ), ): this can serve as a criterion of model

Fig. 1. Problem illustration: the structure with multiple sensitive p-n junctions and an ion
incident at a point between two well borders. The “critical” area is shown by the dashed
line.
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