Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research B

journal homepage: www.elsevier.com/locate/nimb

B. Blank^{a,b,*}, G. Canchel^a, F. Seis^{a,1}, P. Delahaye^c

^a Centre d'Etudes Nucléaires de Bordeaux Gradignan, 19 Chemin du Solarium, CS10120, F-33175 Gradignan Cedex, France

^b ISOLDE/CERN, EP Department, CH-1211 Geneve 23, Switzerland

^c Grand Accélérateur National d'Ions Lourds, Bd Henri Becquerel, BP 55027, 14076 CAEN Cedex 05, France

ARTICLE INFO

ABSTRACT

Keywords: Fusion-evaporation reactions Comparison experiment – calculations Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the ¹⁰⁰Sn region.

1. Introduction

On Earth, 255 stable nuclides are available for nuclear physics studies. In addition, 31 quasi stable nuclides having a half-life comparable to or longer than the age of the Earth exist. All other nuclei must be created in order to be usable for experimental studies. Different types of nuclear reactions exist to produce these unstable and radioactive nuclei.

Two methods can be used to create basically all bound or quasi bound (i.e. bound for a short laps of time) nuclei lighter than the projectile or target nuclei: spallation or fragmentation. Spallation reactions are usually induced by light particles (protons or neutrons) on heavier stable target nuclei. In these spallation reactions, the incident light projectile ejects nucleons from the target nucleus by nucleon-nucleon collisions and the excited fragment (often called pre-fragment) evaporates light particles (protons, neutrons, α particles) to get rid of excitation energy. With e.g. incident proton energies of a few hundred MeV up to 1 or 2 GeV, basically all nuclei, bound or quasi bound, but lighter than the target nucleus itself, can be produced. However, as these spallation reactions are basically always "thick-target" reactions, the reaction products have to diffuse out of the target to become useful. As this takes some time and depends very sensitively on the chemistry of the element of interest, short-lived nuclides of condensable elements are very difficult to produce by this means.

Fragmentation reactions employ heavy-ion induced reactions on different heavy-ion targets. Therefore, target as well as projectile fragmentation can be used. Target fragmentation suffers from the same problem as spallation reactions: the products have to diffuse from the target itself. Therefore, this process is again limited to relatively volatile isotopes with sufficiently long half-lives. In projectile fragmentation reactions, one can use "thin targets" which allows the products to recoil out of the target due to the incident projectile energy. This approach is basically universal and allows all nuclides lighter than the projectile to be produced. However, there are at least two drawbacks of projectile fragmentation: i) it needs high-energy heavy-ion accelerators and ii) the beam quality of these fragment beams is rather bad.

BEAM INTERACTIONS WITH MATERIALS

AND ATOMS

In deep-inelastic or transfer reactions, two heavy nuclei interact with each other at energies around the Fermi energy (typically 20–60 MeV/A) and nucleons are transferred from one nucleus to the other producing thus more or less neutron-rich or neutron-deficient isotopes. However, as the number of nucleons transferred is limited, mainly nuclei relatively close to stability in the vicinity of the projectile and the target nuclei are produced.

In nuclear fission, a very heavy nucleus, e.g. ²³⁸U or ²⁵²Cf, fissions by creating two medium-mass nuclides. This fission process can be induced (e.g. by proton, neutron or γ -ray impact) or spontaneous. Due to the curvature of the nuclear valley of stability, the heavy fissioning nuclei have always an excess of neutrons compared to lighter nuclei. Therefore, nuclear fission always produces neutron-rich isotopes in the mass range of A \approx 50–170.

Finally, neutron-deficient nuclides can be produced by fusing two lighter nuclei. In this case, the situation is reversed compared to fission. The light stable nuclei that interact are proton-rich compared to the heavier nuclei in the valley of stability. For example, the reaction of a stable ⁴⁰Ca nucleus with a stable ⁵⁸Ni nucleus produces as the compound nucleus, i.e. the sum of all nucleons, ⁹⁸Cd, a nucleus which is 8 neutrons more neutron-deficient than the most neutron-deficient stable isotope of the element cadmium.

https://doi.org/10.1016/j.nimb.2017.12.003

Received 18 September 2017; Received in revised form 4 December 2017; Accepted 4 December 2017 0168-583X/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Centre d'Etudes Nucléaires de Bordeaux Gradignan, 19 Chemin du Solarium, CS10120, F-33175 Gradignan Cedex, France. *E-mail address:* blank@cenbg.in2p3.fr (B. Blank).

¹ Summer student at CENBG.

Table 1

_

Experimental cross sections from literature. Given are the mass and charge number of the nuclei of interest, the mass and charge number of the projectile and target nuclei, respectively, the incident beam energy, the experimental cross section and its error if available, and the reference.

A	Z	Ap	$\mathbf{Z}_{\mathbf{p}}$	At	Zt	E (MeV)	Cross section	Error (mb)	Ref.	
							(IIID)			
Light $N \approx Z$ nuclei										
64	30	12	6	54	26 6	37	1.60E + 02	7.00E + 00	[21]	
64 64	32	54 40	20 20	12 27	0 13	102	7.90E + 01 4 00F - 01	6.00F - 02	[22]	
64	32	54	26	12	6	165	6.40E - 01	7.00E - 02	[23]	
64	32	54	26	12	6	150	3.40E - 01	9.00E - 02	[22]	
64	32	54	26	12	6	165	5.00E - 01	3.00E - 01	[24]	
64	32	12	6	58	28	40	2.00E - 01	5.00E - 02	[25]	
68	34	58	28	12	6	175	3.80E - 02	1.60E - 02	[24]	
68 70	34	58	28	12	6	220	2.00E - 01	5.00E - 02	[26]	
72	30 36	58	0 28	- 16	20 8	170	1.00E - 01 6 00F - 02	3.00 ± -02 2 50 = 02	[23]	
76	38	54	26	24	12	175	1.00E - 02	5.00E - 03	[24]	
80	40	58	28	24	12	190	1.00E - 02	5.00E - 03	[28]	
80	39	58	28	24	12	190	2.00E + 00	1.00E + 00	[28]	
80	38	58	28	24	12	190	4.40E + 01	4.00E + 00	[28]	
¹⁰⁰ Sn region										
95	45	58	28	50	24	250	1.10E + 00	4.00E - 01	[29]	
97	45	58	28	50	24	250	3.40E+00	2.00E-01	[29]	
98	46	58	28	50	24	250	2.20E + 01	2.00E + 00	[29]	
90 90	47	58 58	∠ð 28	50	24 24	250 250	3.00E - 01 3.60E + 00	4.00E - 02	[29]	
99	48	58	28	50	24	249	3.20E - 02	2.00E - 02	[30]	
99	48	58	28	50	24	249	3.20E - 02	2.00E - 02	[30]	
99	48	50	24	58	28	225	2.50E - 02	8.00E - 03	[30]	
99	48	58	28	58	28	348	1.10E - 02	8.00E - 03	[30]	
99	48	58	28	58	28	371	2.80E - 02	2.10E - 02	[30]	
99 100	48 47	58	28 28	50	28 24	394 250	3.10E - 02 3.90E + 00	2.00E - 02 2.00F - 01	[30]	
100	47	50	24	58	28	225	3.90E + 00	2.001 01	[29]	
100	48	50	24	58	28	225	1.00E + 00		[31]	
100	49	50	24	58	28	225	1.00E - 03		[31]	
100	49	58	28	50	24	319	2.60E - 03		[30]	
100	49	58	28	58	28	325	8.00E - 04		[30]	
100	49	58	28	58	28	348	1.70E - 03		[30]	
100	49	58	28 28	58	28 28	394	1.60E - 03		[30]	
100	50	50	24	58	28	225	4.00E - 05		[31]	
101	47	58	28	50	24	250	4.70E + 01	3.00E + 00	[29]	
101	48	58	28	50	24	250	1.80E + 01	2.00E + 00	[29]	
101	50	58	28	50	24	249	1.60E - 05	4.00E - 06	[30]	
101	50	58	28	50	24	250	1.00E - 05	4.005 06	[30]	
101	50 50	58	28 28	58	20 28	348	9.00E - 00 1.30E - 05	4.00E - 00 3.00E - 06	[30]	
101	50	58	28	58	28	371	2.80E - 05	1.00E - 05	[30]	
101	50	58	28	58	28	394	7.00E - 06	4.00E - 06	[30]	
102	48	58	28	50	24	250	6.30E + 01	1.90E + 01	[29]	
102	49	58	28	50	24	249	9.00E - 01	5.00E-01	[30]	
102	49	58	28	50	24	249	1.30E + 00	7.00E - 01	[30]	
102	49 49	58 58	∠8 28	50 58	24 28	348 325	1.10E + 00 1 20E + 00	6.00E - 01 6.00F - 01	[30] [30]	
102	49	58	28	58	28	348	1.20E + 00 1.20E + 00	6.00E - 01	[30]	
102	49	58	28	58	28	348	7.00E - 01	3.00E - 01	[30]	
102	49	58	28	58	28	371	1.00E + 00	5.00E - 01	[30]	
102	49	58	28	58	28	394	9.00E - 01	4.00E - 01	[30]	
102	50	58	28	52	24	225	2.00E - 03	4.005 01	[32]	
103	47 48	58 58	∠8 28	50 50	24 24	⊿50 250	3.00E + 00 2.70E + 01	4.00E - 01 2.00F + 00	[29] [29]	
103	49	58	28	50	24	250	6.40E + 00	8.00E-01	[29]	
104	48	58	28	50	24	250	1.79E+02	7.00E+00	[29]	
104	49	58	28	50	24	250	5.80E + 01	1.60E + 01	[29]	
104	50	58	28	50	24	250	1.80E+00	2.00E - 01	[29]	
105	49	58	28	50	24	250	1.16E + 02	6.00E + 00	[29]	
105	50	58	28	50	24	∠50	1.00E+01	2.00E+00	[29]	
Ba nı	ıclei		0.0			000 01-	0.000	1.005	10.03	
114	56 54	58 50	28	58 59	28	222 - 248	2.00E - 04	1.00E - 04	[33]	
114	20	58	28	58	28	∠03 — — 244	∠.00E - 04	1.00E-04	[34]	

Heavi	Heavier nuclei											
171	79	78	36	96	44	361	1.10E - 03		[35]			
171	79	78	36	96	44	359	2.00E - 03		[35]			
171	79	78	36	96	44	363	6.00E - 04		[35]			
170	79	78	36	96	44	386	9.00E - 05		[35]			
173	80	78	36	102	46	384	4.00E - 06		[35]			
172	80	78	36	96	44	361	4.00E - 06		[35]			
171	80	79	26	96	11	361	2.00E - 06		[25]			
176	01	70	26	102	44	201	2.00E 06		[35]			
170	01	70	30	102	40	364	3.00E - 00		[33]			
172	80	/8	36	96	44	3/5	9.00E - 06		[36]			
1/3	80	80	36	96	44	400	1.50E - 05		[36]			
174 80 80 36 96 44 375 3.30E-04 [36]												
Proton emitter: pn channel												
185	83	92	42	95	42	410	1.00E - 04		[37]			
185	83	92	42	95	42	420	6.00E - 05		[38]			
Proto	n emi	tter 1	2n ci	hannel								
109	53	58	28	54	26	195	1.00F - 02		[39]			
100	53	59	20	54	20	220	1.00E 02	4.00E - 03	[30]			
109	55	50	20	54	20	220	1.00E - 02	4.00E-03	[40]			
109	55	50	20	54	20	240	5.00E - 03		[41]			
109	55	50	20	54	20	229	3.00E - 02		[42]			
109	53	58	28	54	26	250	4.00E+01	+ 4.00E + 01 -2.00E + 01	[43]			
109	53	58	28	58	28	250	3.00E + 01	+ 3.00E + 01	[43]			
								-1.50E + 01				
113	55	58	28	58	28	250	3.00E + 01		[43]			
147	69	58	28	92	42	260	1.80E - 02		[44]			
151	71	58	28	96	44	266	7.00E - 02	1.00E - 02	[45]			
161	75	58	28	106	48	270	6.30E - 03	1.80E - 03	[46]			
167	77	78	36	92	42	357	1.10E - 01		[47]			
171	79	78	36	96	44	389	2.00E - 03		[47]			
171	79	78	36	96	44	370	6.00E-04		[48]			
171	79	78	36	96	44	361	1.10E - 03		[35]			
171	79	78	36	96	44	359	2.00E - 0.3		[35]			
171	79	78	36	96	44	363	6.00E - 04		[35]			
177	81	78	36	102	46	370	3 00E - 05		[49]			
									1.141			
Proto	n emi	tter: I	o3n cl	nannel								
108	53	58	28	54	26	240255	5.00E - 04		[50]			
112	55	58	28	58	28	259	5.00E - 04		[51]			
146	69	58	28	92	42	287	1.00E - 03		[52]			
150	71	58	28	96	44	297	2.56E - 03		[53]			
150	71	58	28	96	44	292	3.05E - 03		[54]			
160	75	58	28	106	48	300	1.00E - 03		[55]			
166	77	78	36	92	42	384	6.30E-03		[47]			
176	81	78	36	102	46	384	3.00E - 06		[35]			
Droto	n ami	ttor 1	An cl	hannal								
117	57	58 58	28	64	30	310	2.00F - 04		[56]			
117	57	58	20	64	30	295 310	2.00E 04	$\pm 2.40E - 0.01$	[57]			
11/	57	50	20	04	50	293,310	2.401 04	+2.40E = 04 -1.20E = 04	[37]			
131	63	40	20	96	44	222	9.00E - 05		[58]			
141	67	54	26	92	42	285,305	2.50E - 04		[58]			
141	67	54	26	92	42	315	3.00E - 05		[59]			
145	69	58	28	92	42	315	5.00E-04		[60]			
145	69	92	42	58	28	512	2.00E - 04		[61]			
155	73	58	28	102	46	315.320	6.00E - 05		[62]			
165	77	78	36	92	42	384	2.00E - 04		[47]			
100	i emi	uer: 1	JOIL CI	winel	20	400	0.005 00		[60]			
130	63	78	36	58	28	432	9.00E-06	+9.00E-06	[63]			
140	67	54	26	92	42	315	3 00F - 06	-4.50E - 00	[50]			
110 07 01 20 72 TZ 010 0.00E-00 [09]												
Proto	n emi	tter: I	o6n cl	hannel								
121	59	36	18	92	42	240	3.00E – 07	+ 3.00E - 07	[64]			

Cross section

3.00E - 03

8.00E - 04

5.50E - 02

1.90E-02

(mb)

Ref.

[34]

[34]

[34]

[34]

Error (mb)

1.00E - 03

4.00E - 04

2.00E - 02

6.00E-03

-1.(0E - 07)

[65]

3.00E-06

Table 1 (continued)

A Z

 $116 \ 56 \ 58 \ 28 \ 60 \ 28$

 $116 \ 56 \ 58 \ 28 \ 63 \ 29$

117 56 58 28 63 29

118 56 58 28 63 29

 A_t

 $A_p \quad Z_p \\$

 \mathbf{Z}_{t}

E (MeV)

209 - -249

249 - -284

249 - -284

249 - -284

135 65 50 24 92

42 310

Download English Version:

https://daneshyari.com/en/article/8039404

Download Persian Version:

https://daneshyari.com/article/8039404

Daneshyari.com