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A B S T R A C T

We present a ballistic model for the transport of electronic excitation energy induced by keV particle bom-
bardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is

employed to follow the evolution of the temporal and spatial distribution function → →
f r k t( , , ) describing the

occupation probability of an electronic state
→
k at position →r and time t. Three different initializations of the

distribution function are considered: i) a thermal distribution function with a locally and temporally elevated
electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic
distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport
direction. While the first initialization resembles a distribution function which may, for instance, result from
electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle
result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE,
we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space
resolved excitation energy distribution function, which is then analyzed in view of general transport char-
acteristics of the chosen model system.

1. Introduction

The excitation of the electronic degrees of freedom following the
impact of a keV particle onto a solid surface manifests in three different
experimentally accessible observables: the formation of secondary ions
within the flux of particles released (“sputtered”) from the surface [1],
the emission of electrons into the vacuum (“external” electron emis-
sion) [2,3] and the flux of excited charge carriers through a buried
internal energy barrier realized, for instance, by the insulating film of a
metal-insulator–metal junction (“internal” electron emission) [4]. In
order to understand the results of such measurements and arrive at a
prediction of those quantities, we proposed a model to calculate the
excitation of electronic degrees of freedom resulting from electronic
friction of moving particles and autoionization following close binary
collisions in a particle impact-induced atomic collision cascade [5–7].
As one of the essential ingredients of such a model, the rapid transport
of excitation energy away from the spot of its generation was described
in terms of a diffusive approach involving a nonlinear diffusion equa-
tion, where the electron energy diffusivity was coupled to the local and
temporal lattice disorder, yielding a four-dimensional excitation energy
density profile which may then be parametrized in terms of an elevated
time and position dependent electron temperature. The resulting

electron temperature profiles were then employed to obtain external
electron emission yields by means of a slightly modified Richardson-
Dushman approach [8,9] or to assign ionization probabilities to each
sputtered atom according to the so-called substrate excitation model
[10].

In contrast to the rather successful calculation of external electron
yields, a straightforward adoption of the thermionic emission approach
to calculate internal electron emission yields turned out to give results
underestimating experimental data by orders of magnitude [11]. This
discrepancy may be explained in terms of the large electron mean free
paths within the first femtoseconds after the projectile impact. Thus, the
applicability of the diffusion model must be put into question especially
at that particular time interval, which coincides with the period where
most of the (internal and external) electron emission is assumed to take
place.

Therefore, it was concluded that the ballistic nature of the transport
process probably has to be taken into account within the model. One
attempt was done in terms of a hybrid model [12] combining diffusive
and ballistic transport of the excited electrons. First, for a set of layers in
different depths below the surface, electron temperatures are calculated
according to the standard diffusion model. Then, each layer is regarded
as a source of hot electrons according to the Richardson-Dushman
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model. These hot electrons are now assumed to undergo a ballistic
transport, which is phenomenologically described via an effective mean
free path λ for inelastic energy losses preventing them from being able
to traverse the buried tunneling barrier. Depending on the traveling
length x towards the barrier, the probability to arrive at the meta-
l–insulator interface and contribute to the internal emission yield is
then described by −x λexp( / ). With this approach, it was shown that the
calculated internal electron emission yields are of the right order of
magnitude as measured experimentally. However, this hybrid model is
not capable of treating directional effects as induced, for instance, via a
variation of the projectile angle of incidence, arising from the extremely
anisotropic excitation spectra found in [13].

In order to tackle this problem and take the treatment of electronic
excitation transport one step further, the present work employs the
classical Boltzmann transport equation (BTE) enabling a more funda-
mental investigation of the ballistic transport characteristics of elec-
tronic excitation energy generated in the first few femtoseconds after
the projectile impact. Different initial distribution functions

→ →
=f r k t( , , 0) for the occupation probability density of an electronic

state with wave number
→
k at position →r and time t are implemented

representing different excitation mechanisms such as electronic friction
(generating a thermal-like distribution [14–17] and electron promotion
(generating single electron excitations above the Fermi level [7,18]).
The latter, which in the following will be referred to as “‘peak excita-
tion”’, is considered to model the fate of a single electron excitation and
investigate the competition between ballistic transport and thermali-
zation via electron–electron scattering. The temporal and spatial evo-
lution of the distribution function → →

f r k t( , , ) obtained this way can be
analyzed with respect to the transport of excitation energy, and the
results will be compared to the formerly used diffusive transport model.

2. Model

Once excitation energy has been generated within an atomic colli-
sion cascade, we can model its dynamics by means of the Boltzmann
transport equation (BTE)
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for the distribution function → →
f r k t( , , ) describing the occupation prob-

ability density of an electronic state with wave vector
→
k . The left hand

side of Eq. (1) represents the variation of → →
f r k t( , , ) in space and time

due to ballistic transport, whereas the right hand side of Eq. (1) takes
into account the changes of the distribution function due to electro-
n–electron scattering. Note that electron phonon collisions are ne-
glected here, since the relevant timescale for these interactions is of the
order of picoseconds [19], whereas the typical timescale of electron
emission which is targeted here is only a few femtoseconds [8,9].

In detail, the variation of f due to electron–electron scattering,
where electrons with initial wave vectors

→
k and

→
k1 are scattered into

states with wave vectors
→
k2 and

→
k3 and vice versa, is given by
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In Eq. (2), Mee denotes the electron–electron scattering matrix ele-
ment in the k-space and Ω is the volume of an individual discretization
cell. The essential physical input entering Mee is the Fourier transform
of a screened Coulomb electron–electron interaction potential
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with κ denoting the characteristic inverse screening length as the only
free parameter of the model. For simplicity, we use the Thomas–Fermi
screening length [20]
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yielding =κ 3.6 Å−1 for the electron density n given below. A more
sophisticated determination of the screening length would be a self
consistent calculation of this quantity according to the equation
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We checked the influence of κ on the calculated diffusion coefficient
D (see below) in a range of − −[2 Å ,5 Å ]1 1 and find diffusion coefficients
varying from 14.7 to 15.3 cm2/s, indicating a rather weak influence with
regard to the goal of the present work.

Using a plane wave approach for the electrons we obtain
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k k k k kΔ 1 2 3 denoting the transfer of momentum between
the electrons.
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ensures that in the sum over all mathematically possible collisions only
those collisions are considered, which are in accordance with energy
conservation. In addition, according to Pauli’s principle the transition
from an initial electronic state with wave vector

→
ki to a different final

electronic state with wave-vector
→
kf scales with the probability that the

initial state is occupied and the final state is unoccupied, leading to an
additional factor

→
−

→
f k f k( )(1 (i f )).

The numerical integration of this six-dimensional Boltzmann equa-
tion turns out to be computationally too expensive. Therefore, we re-
strict our calculations to one dimension in real space and two dimen-
sions in the k-space, where one direction of the k-space is oriented along
the transport direction in real space (x-axis) and the other direction is
perpendicular to the transport direction. Note that this refers to a two-
dimensional treatment in k-space, and therefore the characteristics of a
two-dimensional electron gas need to be used in order to describe the
ground state properties of the electronic system. The real space is dis-
cretized in cells of length =xΔ 3 Å in the space domain, and the k-space
is discretized into 61× 61 k-vectors per spatial cell with

=kΔ 0.054 Å−1. This discretization is a trade-off between cpu-power
and the resolution of the k-space. Note that kΔ is small compared to the
inverse screening length =κ 3.6 Å−1 of the screened Coulomb poten-
tial. Due to the finite spacing of the k-grid, fluctuations of the totatl
energy in the system may occur. We have therefore repeated a few
calculations using a finer spacing and found no significant differences
with respect to the presented results.

The ground state properties of the system were set to describe a
generic two-dimensional electron gas with a Fermi energy of

=E 5.0F eV, corresponding to an electron density of = ×n 2.1 1019 m−2

and a wave vector =k 1.2F Å−1, which are approximately characteristic
for silver at temperature =T 0 K. In order to describe a localized ex-
citation of the system, two types of initial conditions for the distribution
function → →

f r k t( , , ) are implemented at a particular point in real space,
namely i) a Fermi–Dirac-distribution at different elevated electron
temperatures and ii) a 0 K Fermi–Dirac distribution additionally ex-
hibiting one or more non-thermal single electron excitations in terms of
selected k-states occupied above EF .

S. Hanke et al. Nuclear Inst, and Methods in Physics Research B 415 (2018) 127–135

128



Download English Version:

https://daneshyari.com/en/article/8039476

Download Persian Version:

https://daneshyari.com/article/8039476

Daneshyari.com

https://daneshyari.com/en/article/8039476
https://daneshyari.com/article/8039476
https://daneshyari.com

