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a b s t r a c t

An approach for tomographic reconstruction of three-dimensional strain distributions from Bragg-edge
neutron transmission strain images is outlined and investigated. This algorithm is based on the link
between Bragg-edge strain measurements and the Longitudinal Ray Transform, which has been shown
to be sensitive only to boundary displacement. By exploiting this observation we provide a method for
reconstructing boundary displacement from sets of Bragg-edge strain images. In the case where these
displacements are strictly the result of externally applied tractions, corresponding internal strain fields
can then be found through traditional linear-static finite element methods. This approach is tested on
synthetic data in two-dimensions, where the rate of convergence in the presence of measurement noise
and beam attenuation is examined.

� 2016 Elsevier B.V. All rights reserved.

1. Bragg-edge strain measurement and the Longitudinal Ray
Transform (LRT)

Bragg-edges are a term given to discrete jumps in the relative
transmission rate of neutrons through polycrystalline samples as
a function of wavelength, k [1]. These edges are formed through
diffraction with their positions related to lattice spacings within
the sample through Bragg’s law. In simple terms, in a polycrys-
talline sample neutrons can be coherently scattered by crystal
planes of a certain spacing up until their wavelength corresponds
to a scattering angle of 180� (i.e. backscattered). This wavelength
is given by two times the corresponding lattice ‘d-spacing’, and
no further (coherent) scattering by this lattice plane occurs above
this value. This creates an abrupt increase in the relative transmis-
sion rate.

Multiple Bragg-edges can be found from a typical sample corre-
sponding to various lattice spacings within the crystal structure.
This can provide a wealth of structural information, or in the case
of this paper, minute shifts in the position of edges can be used to
measure strain within the sample of the form;

h�i ¼ d� d0

d0
; ð1Þ

where h�i is the normal stain in the direction of transmission
averaged over the irradiated volume, d is the measured lattice
spacing and d0 is the same spacing in an unstressed sample. Like
all diffraction techniques, strain measured in this way refers only
to the elastic portion of deformation which is related to stress
through Hooke’s law (see [2–5]).

While other approaches exist (e.g. [6]), the most common
experimental technique for measuring Bragg-edges relies on the
use of energy-resolved, or ‘time-of-flight’, neutron detectors at
pulsed neutron sources [1,3]. This technology has undergone
significant development with pixelated detectors being in
existence for more than 10 years [7]. The current generation of
detectors consist of an array of up to 512 � 512 pixels with spatial
resolution of 55 lm and temporal resolution of 100 ps1; each one
capable of simultaneously measuring a transmission spectra [8]. This
has allowed the possibility of high resolution strain imaging, where
two dimensional projections of the strain field within a sample can
be made in an analogous way to a traditional radiograph [9].

From the outset, the first demonstration of strain imaging
raised the tantalising prospect of tomographic reconstruction of
three-dimensional strain fields. As opposed to conventional
tomographic imaging of scalar fields (e.g. X-ray CT and MRI), the
problem here is the reconstruction of tensor fields – a significantly
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1 The corresponding energy/wavelength resolution depends on the length of the
instrument. For example, with a flight tube 40 m in length, 100 ps corresponds to a
wavelength resolution of around 10�8Å.
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more complex problem. Initial work in this area focused on the
special case of axisymmetric systems (e.g. [10–12]), however it
was recently shown by Lionheart and Withers [13] that a general
solution to the reconstruction problem is not possible. An overview
of this argument is as follows:

Say we have a body, B, subject to a displacement field /ðxÞ as
shown in Fig. 1. In the absence of attenuation effects and assuming
a ray of infinitesimal cross section, a single strain measurement
from a given pixel in an energy-resolved detector can be expressed
as;

h�i ¼ I�ðx0; n̂Þ ¼ 1
L

Z L

0
�ijðx0 þ sn̂Þn̂in̂jds; ð2Þ

where the corresponding ray in the direction n̂ enters B at the point
x0 2 @B and exits at x0 þ Ln̂ 2 @B, with internal strain defined as
�ij ¼ 1

2 ð/i;j þ /j;iÞ.2 I� is a form of ray transform, specifically known
as the Longitudinal Ray Transform (LRT) [13].

Along the ray, we can write d/i
ds ¼ /i;j

dxj
ds ¼ /i;jnj, and (2) becomes;

I�ðx0; n̂Þ ¼ 1
L

Z L

0

1
2
ðd/in̂i þ d/jn̂jÞ ¼ 1

L
ð/iðx0 þ Ln̂Þ � /iðx0ÞÞn̂i ð3Þ

This result indicates that I� is only sensitive to displacement of
the boundary of B. Given that multiple strain fields exist that result
in no boundary deformation, it implies that the LRT has a non-
trivial kernel and therefore has no inverse. For a simple example;
consider the case of a uniform two-dimensional plate that is fully
constrained at its perimeter. Under the action of a body force such
as gravity, the strain field within this plate would be non-zero;
however, in terms of the LRT, this would be indistinguishable from
the undeformed case (I� ¼ 0 in both cases).

As was pointed out by Lionheart and Withers [13], this presents
a serious problem in terms of general tomographic reconstruction
of strain; a given boundary deformation does not uniquely define
the strain field within an object.

2. Tomography via boundary displacement reconstruction

While the argument from Lionheart and Withers is true in a
general sense, there are often physical realities that do lead to a
trivial kernel. For example, if a uniform elastic body is only subject
to boundary tractions (i.e an in situ loading in the absence of all
body forces and eigenstrains [14]), then there is an obvious
(injective) link between the internal strain field and boundary
deformation; an absence of boundary deformation obviously
implies zero strain in this case.

This observation provides a potential approach to tomographic
reconstruction of strain for this class of problems. This strategy is
as follows;

1. Utilising Eq. (3), reconstruct the elastic component of
displacement over the entire boundary of the object.

2. Calculate the internal strain field by solving the resulting
Dirichlet boundary value problem.

A numerical implementation of this approach (adapted from
[15]) is as follows;

2.1. Numerical algorithm

In the first stage, we are concerned with the reconstruction of
boundary deformation. To this end, we begin by discretising the

surface of the body using a triangular mesh with nv vertices
(or ‘nodes’) with 3nv unknown Cartesian displacements. A given
ray can enter and leave the body at arbitrary points; the
displacement of which can be related back to the nodes through
interpolation via linear shape functions.

Say a ray intersects a given mesh element at x as shown in
Fig. 2. With reference to the displacement of the three correspond-
ing nodes, /1;/2, and /3, we can approximate the displacement at
x using linear shape functions as;

/ðxÞ ¼ k1/1 þ k2/2 þ k3/3; ð4Þ

where ki ¼ Ai
A for i 2 f1;2;3g and A ¼ P

Ai is the total area of the
element.

Through Eq. (3), we can now express the strain measured by a
given Bragg-edge measurement in matrix form as;

h�i¼ I�ðxp; n̂Þ¼1
L

n̂T �n̂T
� � /q
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where superscript p refers to the entry point, q refers to the exit and
L ¼ kxq � xpk.

Note that this calculation has been split into two parts corre-
sponding to the entry and exit. In principal these could be com-
bined into one matrix, however if the mesh elements are
neighbours it is possible for some of the vertices to be repeated.
It should also be noted that this expression is constructed for a
convex body, however it could be trivially extended to a non-
convex body by considering differences between each instance of
an entry and exit of the ray.

Fig. 1. Strain within a body measured by an idealised ray in a Bragg-edge time-of-
flight transmission neutron experiment. This measurement represents the normal
component of strain in the direction n̂, averaged along the path. It can be expressed
as the relative change of the length of the path through the body.

Fig. 2. Interpolation of displacement at a point x within a triangular mesh element
on the surface of a body. The areas of the sub triangles are denoted by A1;A2, and A3.
The nodal displacements are given by /1;/2, and /3. The displacement at the point
x is /ðxÞ.

2 It is easily shown that I�ðx0; n̂Þ ¼ I�ðx0 þ fn̂; n̂Þ;8f 2 Rwhere integration limits are
adjusted to suit.
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