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a b s t r a c t

The development of the ripple pattern during the ion beam sputtering (IBS) is expounded via the evolu-
tion of its constituent ripples. For that purpose, we perform numerical simulation of the ripple evolution
that is based on Bradley–Harper model and its non-linear extension. The ripples are found to evolve via
various well-defined processes such as ripening, averaging, bifurcation and their combinations, depend-
ing on their neighboring ripples. Those information on the growth kinetics of each ripple allow the
detailed description of the pattern development in real space that the instability argument and the
diffraction study both made in k-space cannot provide.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Extended incidence of energetic ion beam at a surface or the ion
beam sputtering (IBS) often results in highly ordered nanometer-
scale patterns on various substrates of metals [1,2], semiconduc-
tors [3,4], oxides [5,6] and polymers [7]. Typically, near normal
incidence of the ion beam leads to the creation of nanodot patterns
[8,9]. With the increase of the incidence angle from the surface
normal, the patterns composed of the nanometer-scale ripples
develop [10,11]. This physically driven self-assembly is easily scal-
able and cost effective, and thus can be supplementary to the
lithography for the applications where the order of the pattern
needs not to be addressable [12–15].

The pattern formation by IBS originates from the balance
between the mass redistribution near the surface by energetic inci-
dent ions and the diffusion of adspecies created during IBS. Bradley
and Harper (BH) combined the Sigmund theory of the erosion
[16,17] within the linear approximation with the Mullins’ model
of diffusion of the adspecies [18,19], and put forward the cele-
brated BH equation [20] or Eq. (1) below. The first two terms on
the right hand side (rhs) of Eq. (1) lead to the surface instability
by curvature-dependent erosion, while the third term represents
the diffusion of the adspecies, curing the instability by filling the
valley.
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Fourier transformation of Eq. (1) gives the dispersion relation of
the Fourier component of hðr; tÞ or hðk;xkÞ as shown in Eq. (2).
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The dispersion relation predicts a generic behavior of the pattern
formation governed by BH model; there is a Fourier component
hðk�

;xk� Þ having a characteristic wavelength

k� ¼ 2p=k� ¼ 2pð2K=mÞ1=2 where m means the absolute value of
the larger one between mx and my. This component grows most
rapidly and governs the pattern in the long run, before non-linear
effects become influential in the pattern formation [21,22]. We will
call this state as the characteristic state.

Since the sputtering is a stochastic process, features of various
wavelengths coexist in the early stage of IBS. The transient behav-
ior of those features evolving to form the pattern characterized by
k� has been studied mainly in k-space by the diffraction tools such
as the light scattering [23] and the X-ray scattering [24]. However,
to the best of our knowledge, the processes leading to the charac-
teristic state have little been microscopically investigated in real
space. This is contrasted to the case of the thin film growth where
the growth kinetics is described mostly in real space and the ato-
mistic description can even quantitatively reproduce the experi-
mental observations [25,26].

We have delved into the novel approach elucidating the pattern
development via the processes by which each constituent of the
pattern evolves. Then, the immediate issues are (1) whether there
are identifiable processes by which the ripples evolve in the tran-
sient states, (2) under which condition each process is realized,
and (3) whether the pattern evolution in the transient state can
be elucidated in terms of those processes.
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From the numerical simulation, we find that the ripples evolve
via various well identifiable processes such as the ripening, averag-
ing, bifurcation, and their combinations. The realization of each
process depends not only on the ripple, but on its neighbors. Those
processes well elucidate the details of the pattern evolutions
observed for the pre-patterned Au(001) surfaces. Thus obtained
information should help constructing the microscopic picture for
the pattern development that is based on the growth kinetics of
the constituent nano structures, and be complementary to the
instability argument and the diffraction study both made in
k-space.

2. Simulation

We have performed most simulation, employing BH model with
the noise term. We have also examined the non-linear effects
employing extended Kuramoto Sivashinski (eKS) model as shown
below;
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The coefficients mx; my;K;l1 and l2 depend on phenomenological
parameters such as flux, ion energy and substrate temperature as
well as the substrate. BH equation can be retrieved from eKS equa-
tion by neglecting the non-linear terms such as Kadar–Parisi–Zhang
(KPZ) [27] and conserved KPZ (cKPZ) terms, respectively the fourth
and fifth terms in rhs of Eq. (3). KPZ term describes the slope depen-
dence of the sputter yield, to which the saturation of the amplitude
is attributed [28]. cKPZ term accounts for the local redeposition of
the sputtered material and the surface confined transportation
[29]. Any inevitable anisotropy in the nonlinear terms is not
included in the Eq. (3). The noise g is represented by an uncorre-
lated Gaussian distribution with zero mean and a correlator
hgðr; tÞgðr0; t0Þi ¼ Ndðr� r0Þdðt � t0Þ, which reflects the stochastic
nature of IBS.

For the description of the transient behavior under BH model,
we carried out the numerical simulation with m ¼ 1ðmx ¼ 1;
my ¼ 0:01Þ;K ¼ 1;l1 ¼ 0 and l2 ¼ 0 and N ¼ 0:01 in Eq. (3). For
eKS model, the following coefficients were taken;
m ¼ 1ðmx ¼ 1; my ¼ 0:01Þ;K ¼ 1;l1 ¼ 1 and l2 ¼ 1 and N ¼ 0:01.
Those parameters correspond to the sputtering at the oblique
angles. The standard system size, lattice constant and time step
of our simulation were L� L ¼ 256� 256;Dx ¼ 1 and Dt ¼ 0:01,
respectively. For the comparison of the simulation with the exper-
imental results, the coefficients with the real physical units were
employed as detailed later. Throughout the simulation, the Euler
integration method was employed with the improved spatial dis-
cretization as suggested by Lam and Shin [30]. Note that the ana-
lytic solution of both the linear BH equation [31] and the BH
equation with noise term [32] are known. For practical reasons,

however, we have made numerical integration of the equations
in the present work.

3. Results and discussion

Fig. 1(a–c) show the representative simulated images, respec-
tively, at t ¼ 5, 20 and 50, revealing the pattern evolution on ini-
tially flat surface according to BH model. In Fig. 1(a), the ripples
are frequently interrupted by defects, and undulate irregularly.
At t ¼ 20, the density of the defects has notably decreased, but
the ripples are not straight, yet [Fig. 1(b)]. At t ¼ 50, the ripples
are almost defect-free, quite straight and have almost uniform
width along their ridges [Fig. 1(c)].

Fig. 1(d) shows the power spectral densities (PSDs), i.e., the
square of the modulus of the Fourier transform of the surface pro-
file corresponding to Fig. 1(a)–(c). A peak develops centered
around the characteristic wave vector k� ¼ 2p=k� as predicted by
the instability of BH model. The peak becomes pronounced with
time, indicating that ripples in the pattern become more homoge-
neous with ever smaller distribution of their wavelengths around
k�. The temporal evolution of the individual ripple during the tran-
sient state and its contribution to the realization of the character-
istic state, however, remain obscure.

In order to investigate the growth kinetics of the individual rip-
ple in the transient states, we perform the numerical simulation,
starting from various ripple configurations in which the ripples
are possibly situated during their temporal evolution in real exper-
iments. Each configuration is represented by a pattern in which
two different ripples alternate; Fig. 2(a and b) show two configura-
tions where two kinds of ripples having the same amplitude
(A1 ¼ A2), but with different wavelengths (k1 – k2) alternate. In
Fig. 2(a) where k1 ¼ 0:79k� and k2 ¼ 1:12k�, the wavelengths of
the two ripples converge to their mean value, ðk1 þ k2Þ=2 as t
increases, or averaging of the ripples occurs. (From now on, the
wavelength of the individual ripple is defined by the valley to val-
ley distance in the line profile across its ridge.).

In Fig. 2(b) where k1 ¼ 0:45k� and k2 ¼ 0:67k�, two adjacent rip-
ples coalesce into one large ripple with its wavelength, k1 þ k2. We
will call this process as the ripening of the ripples.

Fig. 2(c) show the evolution of an initial surface in which the
ripples with the same wavelength (k1 ¼ k2 ¼ 0:67k�), but of two
different amplitudes (A1 ¼ 0:8A2) alternate. As IBS proceeds, the
ripples with the relatively small amplitude gradually dwarfen,
while the large ones grow taller and wider. In the long run, the
large ripples become two times wide by taking the space of the dis-
appearing small ripples. This is another form of the ripening of the
ripples.

For the uniform ripple pattern with k ¼ 1:8k� in Fig. 2(d), the
cleavage develops at the center of each ripple along its ridge with
increasing t [Fig. 2(d-1)], and becomes deeper and then completely

Fig. 1. Patterns developing from initially flat surface according to BH model with m ¼ 1ðmx ¼ 1; my ¼ 0:01Þ;K ¼ 1;l1 ¼ 0 and l2 ¼ 0 and N ¼ 0:01 in Eq. (3): at (a) t ¼ 5
(simulation time), (b) t ¼ 20, and (c) t ¼ 50. (d) Corresponding PSD curves from the simulated patterns at different times. The peak in the PSD corresponds to the
characteristic wave vector k� ¼ 2p=k� .
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