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a b s t r a c t

Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is
considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of
the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states
corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of
channeling of the particles and their angular distribution at the exit crystal surface are calculated.
Characteristic experimental parameters for observation the quantum effects are estimated.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The first experimental observation of the charged particle chan-
neling in a bent single crystal was reported in Ref. [1]. This phe-
nomenon was theoretically predicted by Tsyganov in Ref. [2]. At
present, the effect is considered as an perspective method in high
energy physics to control the charged particle beams. A lot of
experimental works were done in order to investigate accurately
various aspects of the phenomenon both for positively [3–7,11]
and negatively charged particles [8–10] with different energies.
The length of dechanneling for high-energy protons in the bent
crystal was measured with high precision [11]. In the papers
[12,13] the undulator on the basis of the bent crystal was consid-
ered theoretically and was realized recently in [14].

The angle of the particle beam rotation is defined by the crystal
length and its curvature radius Rcr. This value was estimated in
dependence on the particle energy in Ref. [2]. All above mentioned
experiments were operated with the crystals having the bent
radius R � Rcr. In this case the theoretical simulation of the particle
channeling can be fulfilled in the framework of the classical
mechanics as it takes place for the channeling in the straight
crystal.

The maximal angle of the particle beam rotation corresponds to
the minimal possible crystal curvature radius R � Rcr. However, as
it was shown in Ref. [15], the classical theory is not applicable in

this case. Therefore, it is of interest to investigate in detail the
particle motion in the bent crystals taking into account the factors
that are not described within the framework of the classical theory
of the phenomenon.

In this paper (see also in [15]) the quantum theory of the planar
channeling of the relativistic particles in a bent single-crystal is
built and the quantum effects are described at the crystal curvature
radius in the range R � Rcr. It is shown that in this case the particle
states in a bent crystal are changed substantially because of
tunneling under the barrier created by the crystallographic planes.
It leads to the change of the efficiency of capture in the channeling
modes and the angular distribution of the particles at the exit
surface of the bent crystal. All numerical calculations are fulfilled
for the proton channeling in the Si crystals but the analysis is valid
also for the negatively charged particles.

2. Stationary states of the particle channeled by the bent crystal.

Let us consider the equation, which follows from the Dirac
equation and determines the stationary states of the relativistic
particle with energy E and massm � E in a crystal if the small spin
effects are not taken into account [15,16] (the natural system of
units with �h ¼ c ¼ 1 is used):
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The average potential of the crystallographic planes in the bent
crystal has cylindrical symmetry [3] and is described by the
following function

VðrÞ ¼
Xn1

n¼�n1

V1ðr � R� ndÞ:

Here V1ðr � R� ndÞ is the potential of a single plane; R is the
curvature radius of the central channel, 2n1 is the number of
crystallographic planes in the direction perpendicular to the bend;
d � R is the interplane distance.

The variables in Eq. (1) can be separated in the cylindrical
coordinate system due to the potential symmetry:

Wð~rÞ ¼ uðrÞffiffiffi
r

p exp½iðluþ pzzÞ�; l ¼ 0;�1;�2; . . . :

To solve this equation it is convenient to introduce relative
radial variable x ¼ r � R; jxj < n1d � R and use the condition
jVðrÞj � E. Then the equation for the function uðrÞ becomes similar
to Schrodinger equation for the particle transverse motion in the
case of planar channeling [17]

� d2

dx2
þ 2E0Veff ðxÞ

( )
uðxÞ ¼ euðxÞ:

The total energy eigenvalue in Eq. (1) is determined by the
quantum numbers l; pz and the energy of radial motion e in the
effective potential Veff ðxÞ:

E � E0 þ e; E2
0 ¼ m2 þ p2

z þ
l2 � 1=4

R2 ;

Veff ðxÞ ¼ VðxÞ þ p2
0

E0R
x ¼ VðxÞ þ p0v

R
x; p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 �m2 � p2

z

q
; ð2Þ

with v ¼ p0=E0 as the particle velocity.
From the classical point of view the bound state of the particle

in a channel is appeared when the potential energy Veff ðxÞ has a
minimum in the range �d=2 6 x 6 d=2. When considering Eq. (2)
this condition takes the following form:

� j V 0ðxÞjmax þ
p0v
R

6 0: ð3Þ

The crystallographic plane potential is the monotonically
increasing function for x ! �d=2, therefore the condition (3) is
equivalent to the following inequality for the average radius of
the crystal curvature:

R P
p0v

j V 0ðxÞjmax

� Rcr; ð4Þ

which coincides with expression obtained by Tsyganov [2].
In order to illustrate the further results quantitatively let us

choose Si crystal bent along the planes (110) (d ¼ 1:92 Å) as an
example. In this case the potential of a single plane is well
approximated by the Peschl-Teller potential [17]:

V1ðxÞ ¼ aPTtanh
2ðx=bPTÞ; ð5Þ

with the parameters aPT ¼ 23 eV, bPT ¼ 0:145d and
V 0

1max ¼ 6:37 GeV/cm.
Remind, that the channeling potential have already took into

account averaging of the microscopic particle-crystal potential
over the atomic thermal vibrations [17]. Deviations from this
potential conditioned by the particle-phonon interaction lead to
an incoherent scattering and define one of the contributions to
the dechanneling processes.

If one considers the channeling of protons with the energy
E ¼ 70 GeV, for which one of the first experiments with a bent
crystal was carried out [1], Rcr � 11:01 cm. Fig. 1 shows the

potential Veff ðxÞ, obtained by (5) and (2) with E0 ¼ 70 GeV, and
the curvature radius R ¼ 12:01 cm.

However, in a quantum theory the condition (4) is not sufficient
to ensure that the particle could be captured in channel and change
the velocity direction at a large angle. It happens because of the
possibility of the particle tunneling under potential barrier
(between the points x1 and x0 in Fig. 1). In the result it passes to
the continuous spectrum state corresponding to a direct motion
of the particle. Lifetime of the particle in a bent channel, and
consequently, the angle of the particle rotation depends on the
concrete form of the potential.

Note that one can consider the quantum effect of under-barrier
tunneling as an additional mechanism of the particle dechanneling
along with the known classical processes [3,11]. At the considered
particle energy such quantum effects are negligible in the case of
planar channeling in the straight crystal. But the barrier penetra-
bility grows significantly when the curvature radius of the crystal
is close to its critical value. Fortunately in this case all calculations
can be conducted analytically for arbitrary VðxÞ, because Veff ðxÞ can
be taken into account in the harmonic approximation. With the
above parameters Rcr � 11:01 cm and we will choose the crystal
bend radius close to this value, for example, R ¼ 12:01 cm
(Fig. 1). In this case, the potential of a bent channel near barrier
can be approximately written in the following form:

Veff ðxÞ �
V1 ¼ 1

2V
00ðx0Þðx� x0Þ2; x0 < x < x0;

V2 ¼ DV � 1
2 j V 00ðx1Þ j ðx� x1Þ2; x < x0:

(
ð6Þ

Here the point x0 is determined from the matching condition
V1ðx0Þ ¼ V2ðx0Þ and DV ¼ Vmaxðx1Þ � Vminðx0Þ.

In order to avoidmisunderstanding it should be stressed that the
harmonic approximation (6) for Veff ðxÞ differs essentially from that
one for channeling potential in the straight crystal. The latter one
is used usually for x near the minimum of VðxÞ. On the contrary
the points x0; x1 corresponding to the minimal value of Veff ðxÞ are
disposed near the point of inflection xd for VðxÞ : V 0ðxdÞmax;

V 00ðxdÞ ¼ 0; jx0 � xdj 	 ðR� RcrÞ (Fig. 1). All these points are close to
the atomic planes and correspond to the potential maximum for
the positively charged particles and to the potential minimum for
the negatively charged particles. Interpolation (6) does not depend
on the detailed form of the channeling potential on the whole
interval but only on the values V 00ðx0Þ;V 00ðx1Þ. It can be verified that
these values change unessentially for all commonly used model
channeling potential and for both particle charges [17].

For the potential (6) the quasi-stationary energy levels for the
particle in the bent channel can be approximately calculated by
means of the formula:

ek � x kþ 1
2

� �
� iCk=2 � eð0Þk � iCk=2;x ¼ V 00ðx0Þ

E0

� �1=2
: ð7Þ

The width Ck of the level can be found by using the quasi-
classical expression for the penetration coefficient of the potential
barrier [18]

Ck ¼ Ax exp �2
Z a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E0ðVeff ðxÞ � eð0Þk Þ

q
dx

� �
; ð8Þ

where A � 1 is pre-exponentials and the two turning points a and b
are defined by the expression:

a; b ¼ x1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV � 2kþ 1ð Þ

ffiffiffiffiffiffiffiffiffiffi
V 00ðx0Þ
E0

q
j V 00ðx1Þ j

vuut
:

Maximal number of the levels corresponding to the particle
bound states is defined by the condition:

kmax <
DV
x

� 1
2
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