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a b s t r a c t

Influence of spatial dispersion on the point charge image near the surface of dielectric or metal is esti-
mated. The polarization field generated by the point charge is calculated. Especially the longitudinal
and transverse components of polarization force applied to the point charge moving in the conducting
tube are considered. It is shown that the cut-off of the Fourier components of dielectric function in the
wave vector space leads to the cut-off in the angular momentum space.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The channeling phenomena in cylindrically shaped dielectric or
metal specimens (capillaries, pores in solid films, nanotubes) are of
growing interest for novel developments in science and technol-
ogy. Channeling of charged particles essentially depends on the
polarization capabilities of the metal/dielectric environment. The
estimation of polarization forces acting on the channeled particle
presumes some physical representations on the inner state of a
particle as well as on its trajectory and polarization capabilities
of the medium. Within a purely classical treatment of the event,
one usually considers the projectile as a point charge, which moves
in the vicinity of a solid surface. The charge image sufficiently well
describes the polarization field near dielectric or metal surface in
the presence of external point charge. Usually, in classical elec-
trodynamics (see, e.g. [1–6]), this problem is solved without taking
into account the spatial dispersion of solid polarization properties
near the surface. In this paper we investigate the corrections to be
done if the medium obey spatial dispersion.

Let calculate the interaction of a point charge with a flat surface
of the uniform semi-infinite dielectric medium that based on the
concept of the field of surface elementary excitations (field of
surface plasmons). In this case, we go beyond the classical elec-
trodynamics using partly quantum mechanical notions. Let the
dielectric function of a semi-infinite conducting medium with a
plane boundary z = 0 to be defined as

ex ¼ 1�Hðkc � kÞx2
0=x

2; ð1Þ

where ex is the Fourier transform of the space–time-dependent
dielectric function of medium, k is a wave number, kc is the maxi-
mal wave vector of elementary excitations, x is the excitation fre-
quency, xc is its maximal value, H(x) – is the Heaviside step
function. Due to the spatial dispersion the restriction arises onto
the wavelength of the plasma oscillations are to be not less the
minimal value kc ¼ 2p=kc . Here the maximal wave vector kc has
the order of the Fermi momentum divided by the Plank constant.
The dielectric function (1) qualitatively correct describes the poten-
tial of the mirror charge when the point charge is placed near the
metal surface. In description of plasmon excitations for a conduct-
ing matter it qualitative corresponds to the famous Lindhard
approach of the electron gas. However, we do not need any spec-
ification of the dielectric function.

The potential of the polarization field can be presented the form

UðpolÞ
s ðz � 0Þ ¼ �Z

Z kc

0
J0ðkjjrÞe�kjj jbþzjdkjj : ð2Þ

Here r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The point charge Z is assumed to be placed

on the distance b in vacuum over the plane boundary on the z-axis

at z > 0. As it follows from (2), at the distances
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2
p

>> k�1
c we

have

Usðz � 0Þ � �Z
Z 1

0
e�kjj jbþzjJ0ðkjjrÞdkjj ¼ �

Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbþ zÞ2 þ r2

q ;
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and therefore, at large distances the polarization field approxi-
mately coincides with the field of the point image charge placed
on the other side of the boundary plane and obeying the negative

sign. But at small distances
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2
p

� k�1
c the image charge cannot

be considered as a point (in opposite to the external charge). It dis-

tributed in the volume with characteristic size l � k�1
c . In particular,

the minimal potential energy of interaction between the external
and image charges is not infinite and equals to Umin = �Zkc.

The potential at z < 0 is defined with the help of analytic contin-
uation of Eq. (2). Minimum of the image potential is found at the
point z = �b, r = 0. In the neighborhood of the minimum the poten-
tial has a more complex behavior than it could be anticipated. In par-
ticular, some of its first derivatives in the minimum do not equal to
zero. The non-usual behavior of the image potential in the vicinity of
the minimum is determined by specific distribution of the charge
density in the mirror. First of all, one may conclude that the image
potential is symmetric relative to the reflection in the plane
z = �b. In the region �b < z < 0 the potential could be written as

Usð�b < z < 0Þ ¼ �Z
Z kc

0
J0ðkjjrÞe�kjj ðbþzÞdkjj :

This expression being calculated along z-axis at r = 0 obeys a
linear behavior near the origin providing the electric field

� @

@z
Us ¼ ð�b < z < 0; r ¼ 0Þ ¼ Zk2

c

2
1� 2

3
kcðbþ zÞ þ � � �

� �
;

is almost constant near the origin. From the physical point of view
the linear behavior of the potential on the z-axis at the vicinity of
the charge image is rather correct and explains the attraction of
the external charge to the dielectric/metal surface for any b > 0.
But in the parallel to the surface direction the electric field suffers
the linear behavior

� @

@x
Usðz < 0Þ ¼ ðy ¼ 0; z ¼ �b; x >� 0Þ ¼ Z

Z kc

0
J1ðkjjxÞkjjdkjj

���
r¼0

� Z
Z kc

0
kjjxkjjdkjj ¼ Z

1
3

k3
c x;

been equal to zero in the origin.
In this work we consider the motion of the point charge in the

tube having the cylindrical symmetry. As a rule, we use the cylin-
drical coordinate system and the atomic system of units.

2. Dielectric tube

Let consider now the case of a dielectric/metal tube (we take in
mind that at the nonzero frequency the dielectric formalism is
applicable for dielectrics and metals as well). Some important elec-
tromagnetic properties of such a specimen were described in the
work [5]. In this case (see the cross section in Fig. 1) we assume
the external point charge Z is moving with the constant velocity
v parallel to the tube’s axis at the distance r0 < a from the axis.
We assume also that only in the area 2 the dielectric function is dif-
fer from unity, equals to ex and takes into account only the time
dispersion. In areas 1, 2, 3 we have different solutions for electric
displacement potential, which we write as superposition of two
sets of linearly independent terms

U¼
Z 1

�1

dx
2p

e�ixt
X

m

eimu
Z 1

0

dk
2p

eikzRþxkmðrÞþ
Z 1

0

dk
2p

e�ikzR�xkmðrÞ
� �

ð3Þ

Here the wave number k assumes to be non-negative. For us it is
important to consider the all set of independent solutions to the

wave equation, in particular, for different signs of the longitudinal
component of the wave vector k. In Eq. (3) this circumstance has
been taken into account explicitly. As known, the functions

R�xkmðrÞ obey the Bessel equation

d2R�xkm

dr2 þ 1
r

dR�xkm

dr
� k2 þm2

r2

� �
R�xkm ¼ �4pqðextÞ�

xkm ðrÞ: ð4Þ

On the boundaries r = a, b the continuity of radial derivatives of
the potential (3) should be fulfilled, and simultaneously the
continuity of quantities R�xkm=e�x should be ensured. We assume
the dielectric function has the sign dependence for the wave
number.

In the following we use the approach which divides all electro-
magnetic field in two independent classes, the potential and the
vortex. This division is useful in the vacuum electrodynamics (as
clearly demonstrated in the book [7]), and could be just more
important in the condensed medium. It was used to calculate the
stopping power for the projectile moving in dielectric cylinder
[8] and is based on two series of the Maxwell equations for the
potential and for the vortex fields. We calculate here only con-
tribution of the potential fields to the charge image keeping in
mind the application of the theory for comparatively slow
ðv � 1 a:u:Þ charged particles. The role of the vortex fields is suffi-
ciently important mostly for the fast projectiles.

In the present work we don’t consider the influence of polariza-
tion forces on the projectile’s trajectory keeping in mind the appli-
cations to the sufficiently massive ion (as Ar+q, q > 0) moving in the
tube with approximately constant velocity ~v . In this case during
the comparatively long time the trajectory could be considered
as a straightforward line.

Let assume the point charge is found inside the tube on the dis-
tance r0ð0 < r0 < aÞ from the axis, at the angle /0. In this case

qðextÞ�
xkm ðrÞ ¼ Z

r0
dðr � r0Þe�imu0 2pdðx	 kvÞ. Then

R�xkmðrÞ ¼ RðextÞ�
xkm ðrÞ þ

F�KmðkrÞ þ G�ImðkrÞ; 0 � r � a

B�KmðkrÞ þ C�ImðkrÞ; a < r � b

(
ð5Þ

Here

RðextÞ�
xkm ðrÞ ¼ �4p

Z r

0
ImðkrÞKmðkr0Þ � Imðkr0ÞKmðkrÞ
� �

qðextÞ�
xkm ðr

0Þr0dr0

ð6Þ

is the partial solution of inhomogeneous Eq. (4). In consequence of

RðextÞ�
xkm ð0Þ ¼ 0 the condition of regularity at the origin r = 0 requests

to set F± = 0, therefore,

Fig. 1. The cross section of the dielectric tube. The point charge Z moves parallel to
the tube’s axis on the distance r0 from the axis.
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