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On the duration of shock loading and yield strength
N.F. Morozov and L.S. Shikhobalov*

St. Petersburg State University, St. Petersburg, 199034, Russia

Thermal atomic motion in a crystal is interpreted as a certain rapidly oscillating stress field called a fluctuation field. A fluctuation
field theory is developed in the context of solid state physics and statistical physics. The theory is applied to the description of dislocation
motion in a crystal at external stress lower than the threshold required for dislocation motion. The dislocation motion is thus due to the
joint action of external and fluctuation stresses. The shock pulse duration at which stress fluctuations have no chance (with 0.99 pro-
bability) to reach the level required for dislocation motion is calculated. With this pulse duration, the material does not experience plastic
deformation, whereas with a longer loading pulse at the same stress it does. The effect, i.e., the absence of plastic deformation with a short
loading pulse, can be eliminated by increasing the stress in the pulse. This suggests that the material yield strength increases with de-

creasing the duration of shock loading.
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1. Introduction

The basic mechanism of plastic deformation of crystal-
line materials is dislocation motion. The yield strength of
crystalline materials, as a rule, displays a descending tempe-
rature dependence and hence it is thermal atomic oscilla-
tions that are conducive to dislocation motion. Thus, dislo-
cation motion is due to the joint action of applied stress and
thermal atomic oscillations. The effect of thermal atomic
oscillations on each individual dislocation segment is dis-
crete in time: the time intervals on which they assist and
fail to assist the dislocation motion are alternating. Accor-
ding to the laws of statistical physics, the above time inter-
vals alternate with a very high rate; therefore their time-
discreteness escapes detection in ordinary experiments on
plastic deformation of materials. However, intensive recent
research in the mechanical properties of materials under
supershort shock loading [ 1] brings up the reasonable ques-
tion: How short must the duration of external loading be
that thermal atomic oscillations have no time, to a high pro-
bability, to initiate dislocation motion?

In this work, we calculate the loading pulse duration at
which thermal atomic oscillations required for dislocation
motion have no chance to occur (to a 0.99 probability) on
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the basis of the Einstein-Debye fluctuation theory and data
of [2]. With this loading pulse duration, the material does
not experience plastic deformation, whereas with a longer
pulse at the same stress it does. The effect, i.e., the absence
of plastic deformation with a short loading pulse, can be
eliminated by increasing the stress in the pulse and this sug-
gests that the material yield strength increases with decrea-
sing the duration of shock loading.

2. Stress field due to thermal atomic oscillations

Let us consider a crystal as an elastic homogeneous iso-
tropic solid that contains dislocations of one slip system.
An immobile dislocation is set in motion providing that the
tangential stress tensor component operating in its vicinity
and along slip plane in the Burgers vector direction is greater
in the absolute value than a certain threshold o, (repre-
sentative of the resistance to dislocation motion). Let us
analyze the case where the above external stress compo-
nent 6., falls short of the threshold and is positive. Thus,
0 <o, <0,, and the aid of thermal atomic oscillations is
required to actuate the dislocations.

Let us treat thermal atomic oscillations as a certain ra-
pidly oscillating stress field — call it a fluctuation field —
universally present in the solid and dependent on its tempe-
rature.
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The fluctuation stress field, like an ordinary stress field,
is bound to obey the system of equations of elasticity. Howe-
ver, our further discussion makes clear that the dislocation
motion is governed by only quite definite values of this field
in small solid subregions. Hence most of the fluctuation
stress field has no effect on dislocation motion and its detai-
led form is of no importance for the description of the pro-
cess. In this context, formulation and solution of the elasti-
city problem for the fluctuation stress field is omitted in the
discussion and we consider this field as a set of individual
stress fluctuations (or “flashes” of stress fluctuations) ari-
sing in certain solid subregions. These terms are used to
emphasize the time and space discreteness of the field. The
field parameters are specified with resort to the known con-
cepts of solid state physics and statistical physics.

For the fluctuation field, we set the simplifying assump-
tions similar to those taken in [2]:

— the fluctuations of all six independent stress tensor
components are independent of each other and are alike in
probability distribution;

—the solid subregions involved in fluctuations are spheri-
cal; the subregion diameters D, unlike those taken in [2],
are different and can assume any value from the lattice cell
parameter a to the minimum linear dimension of the solid
LY

— the fluctuation stress field is homogeneously inside
each subregion involved in fluctuation;

—the duration T; ofa fluctuation “flash” in a subregion
of diameter D is equal to the time it takes for an elastic
wave to travel a distance D with a velocity of sound ¢,:

Ty = —. (1)

G

By analogy with the known Einstein and Debye heat
capacity models [3], we consider that the fluctuation stress
field in the solid is produced by independent oscillators
each of which has a certain frequency v, different for dif-
ferent oscillators and the number of which is equal to the
number of internal degrees of freedom of the solid 3N—6 =
= 3N (N is the number of atoms in the solid). The frequency
V; is taken to be the reciprocal of the fluctuation duration
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The quantity v, is termed the oscillator frequency or
the fluctuation frequency. From the above properties and
from formula (2) it follows that to each oscillator corre-
sponds a certain diameter D of subregions in which it gen-
erates a fluctuation stress, and to different oscillators cor-
respond different diameters.

()

! The minimum linear dimension of a solid in the case where the latter is
a rectangular parallelepiped is the minimum length among the lengths
of its three edges issuing from one vertex; if the solid is a cylinder, it is
the minimum quantity among its height and diameter; if the solid is a
plate, it is its thickness.

Of concern to us is the tangential fluctuation stress ten-
sor component affecting the dislocation motion. We have
3N oscillators and equally distributed fluctuations of six
independent stress tensor components; hence, the tangen-
tial fluctuation stress tensor component of interest is gene-
rated by N/2 oscillators. It is assumed that half of the oscil-
lators produce stress of one sign, and the other produce
stress of opposite sign. We consider only N/4 oscillators
responsible for the tangential stress component codirectional
with the tangential external stress component G-

Note that the fluctuation stress is capable of moving
dislocations not only in the direction of external stress, but
in the opposite direction as well. However in the latter case,
the fluctuation stress is bound to be greater (in the absolute
value) than that in the former case due to the necessity to
overcome the external stress along with the resistance to
dislocation motion. Moreover, the probability of fluctua-
tion decreases rapidly with increasing its value, and hence
with a rather high external stress, the probability of fluctua-
tions moving the dislocations in the direction of external
stress is so much higher than the probability of fluctuations
moving them in the opposite direction that the latter can be
ignored.

Let Q(D) be the diameter distribution density for solid
subregions involved in fluctuations. Because the diameter
range and the oscillator range have one-to-one corres-
pondence, Q(D) is simultaneously the oscillator distribu-
tion density. By analogy with the Debye model [3], let the
number of oscillators with frequencies in the range
[V, ve+dve ] be proportional to v%dvf (in the linear appro-
ximation in dv;). Then in view of formula (2), we have

O(D)dD = const (¢} /D*)dD.

Once the constant in this equality is found from the condi-
tion that the number of oscillators is N/4 and D€ [a, L]
(where a is the lattice cell parameter and L is the minimum
linear dimension of the solid), we conclude the following.

The number of oscillators initiating fluctuations of
the tangential stress component in subregions of diameter
[D, D+dD], is

373 3
oyip = ML __qp Ny, )
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(in the linear approximation in dD). In the above equation,
a<<L.

Let the tangential stress tensor component in question
reaches o, in a certain subregion of volume € (according
to the assumption taken, it is homogeneous in this subre-
gion, 6; > 0). Hence, the corresponding elastic strain ten-
sor component &; = 6,;/(2G) (G is the shear modulus).
The elastic energy of this stress fluctuation is

G 2
Us = Zfdefcdge = %, (4)
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where the subregion volume and the subregion itself are



Download English Version:

https://daneshyari.com/en/article/804079

Download Persian Version:

https://daneshyari.com/article/804079

Daneshyari.com


https://daneshyari.com/en/article/804079
https://daneshyari.com/article/804079
https://daneshyari.com

