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a b s t r a c t

The dynamic Friedel sum rule (FSR) is derived within the second-order Born (B2) approximation for an
ion that moves in a fully degenerate electron gas and for an arbitrary spherically-symmetric electron–
ion interaction potential. This results in an implicit equation for the dynamic B2 screening parameter
which depends on the ion atomic number Z1 unlike the first-order Born (B1) dynamic screening param-
eter reported earlier by some authors. Furthermore, for typical metallic densities our analytical results for
the Yukawa and hydrogenic potentials are compared, for both positive and negative ions, to the exact
screening parameters calculated self-consistently by imposing the exact dynamic FSR requirement to
the scattering phase shifts. The B1 and B2 screening parameters agree excellently with the exact values
at large velocities, while at moderate and low velocities the B1 approximation deviates from the exact
solution whereas the B2 approximation still remains close to it. In addition, a Padé approximant to the
Born series yields a further improvement of the perturbative approach, showing an excellent agreement
on the whole velocity range in the case of antiprotons.

� 2015 Published by Elsevier B.V.

1. Introduction

The dynamic screening of swift heavy charged particles in con-
densed matter is a phenomenon that is important to understand
the electronic stopping power and related projectile-target interac-
tion properties. The screening experienced by an intruder charge
arises from the electron density induced in the traversed medium
and affects the stopping properties of the particles. It is therefore of
interest to determine how this screening effect varies with the pro-
jectile velocity.

An approach commonly used to describe dynamic screening
effects is based on the dynamic Friedel sum rule (FSR) proposed
in [1,2] which uses the concept of the shifted Fermi sphere [3]. This
rule is very useful to adjust in a self-consistent way the electron–
ion interaction potential and the related screening length. In this
paper we study the dynamic FSR for a point-like ion that moves
in a fully degenerate electron gas (DEG) within the framework of

the second-order Born (B2) approximation. The Born approxima-
tion has been previously used in conjunction with the static [4]
or dynamic FSR [1,2], but only within the first-order Born (B1)
approximation. This is somewhat unsatisfactory because the
resulting B1 screening length is independent of the ion atomic
number and is therefore identical for a particle and its antiparticle.
Recently, the static screening length has been deduced within the
B2 approximation [5,6]. The static B2 screening lengths pertaining
to protons and antiprotons agree satisfactorily with the exact
numerical solutions at electron densities typical of metals. In this
context, our main purpose is to go beyond the B1 approximation,
and consider the B2 approximation for the dynamic FSR. This gen-
eralizes the previous results obtained within the static B1 [4] or B2
[5,6] and the dynamic B1 approximations [1,2] and hence furnishes
useful numerical estimates of the influence of both the ion charge
and its velocity on the screening length in a DEG.

2. Self-consistent formulation of the dynamic FSR

Let us revisit the dynamic FSR first formulated by Nagy and
Bergara [1] and later studied in more detail by Lifschitz and Arista
[2] for a DEG. To this end, consider an ion with charge Z1e (Z1 is the
ion atomic number) and constant velocity v that moves through a
DEG of density ne [Fermi wave number kF ¼ ð3p2neÞ

1=3]. An elec-
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tron whose wave vector is ke collides elastically with the ion. The
relative velocity of the colliding particles is denoted as vr ¼ ve � v,
where ve ¼ �hke=me is the electron’s initial velocity. The relative
wave vector is kr ¼ ke � k with k ¼ mev=�h (note that k is not the
wave vector of the ion). In the center of mass (c.m.) frame of refer-
ence the wave function of the incoming free electron is
/kr
ðrÞ ¼ eikr �r whereas its wave function after the collision is given

by the partial-wave expansion (see, e.g., [7])

wkr
ðrÞ ¼

X1
‘¼0

i‘ ð2‘þ 1Þeid‘ðkrÞRkr ;‘ðrÞP‘ðcos hÞ; ð1Þ

where Rkr ;‘ðrÞ and d‘ðkrÞ are, respectively, the radial wave function
and the scattering phase shifts corresponding to the angular
momentum ‘ and depending only on kr (the modulus of kr), h is
the scattering angle in the c.m. reference frame (i.e., the angle
between kr and r), and P‘ are the Legendre polynomials.

Following [1] we introduce now the electron density induced in
the DEG by the moving ion

nindðrÞ ¼
2

ð2pÞ3
Z

ke6kF

jwkr
ðrÞj2 � j/kr

ðrÞj2
� �

dke; ð2Þ

where the integration is performed in the domain ke 6 kF as a con-
sequence of the Pauli exclusion principle. Let us stress that nindðrÞ is
not isotropic because of the motion of the ion. This fact is expressed
in averaging of the induced density with respect to the unit-step
distribution function of a DEG in the laboratory frame of reference
(wave vector ke) while jwkr

ðrÞj2 and j/kr
ðrÞj2 are calculated in the

c.m. reference frame. In the case of an ion at rest kr ¼ ke and Eq.
(2) becomes the equation addressed by Friedel in [8], which yields
the well-known static FSR [8] and an isotropic induced electron
density.

Next we calculate the total charge induced in a spherical vol-
ume XR around the ion, which is Q ind ¼ �eNindðvÞ with

NindðvÞ ¼
Z

XR

nindðrÞdr ¼ 2

ð2pÞ2
Z

ke6kF

AðkrÞ
dke

k2
r

; ð3Þ

where R (with R!1) is the radius of the volume XR and

AðkrÞ ¼
k2

r

2p

Z
XR

jwkr
ðrÞj2 � j/kr

ðrÞj2
� �

dr; ð4Þ

notice that the function AðkrÞ differs from the definition adopted in
[9,1] by a factor k2

r =2p. From Eqs. (1) and (4) it is seen that AðkrÞ is
isotropic and depends only on kr. This enables the angular integra-
tion in Eq. (3) which results in

NindðvÞ ¼
2
p

HðkF � kÞ
Z kF�k

0
AðqÞdqþ 1

4k

Z kþkF

jk�kF j
k2

F � ðk� qÞ2
h i

AðqÞ dq
q

( )
;

ð5Þ

HðjÞ is the Heaviside unit-step function. The quantity AðqÞ can be
evaluated in closed form using Servadio’s general relation [9]. When
R!1 this function can be expressed through the scattering ampli-
tude f ðq; hÞ as follows

AðqÞ ¼ @

@q
qf �ðq;0Þ½ � þ i

Z p

0
qf ðq; hÞ @

@q
qf �ðq; hÞ½ � sin hdh ð6Þ

¼
X1
‘¼0

ð2‘þ 1Þd0‘ðqÞ: ð7Þ

Here f ðq;0Þ is the scattering amplitude for h ¼ 0, the asterisc
denotes complex conjugation and the prime indicates derivation
with respect to the argument. The second part of Servadio’s relation,
Eq. (7), is easily found by substitution of the partial-wave expansion
of the scattering amplitude (see, e.g., [7]) into Eq. (6).

At this point we impose the condition that the intruder ion has
to be completely screened at large distances, Z1eþ Q ind ¼ 0, which

serves as the basic constraint for the scattering theory. It was first
suggested by Friedel [8] and can be viewed as the conservation of
the total charge of a many-electron system. In this sense the FSR is
similar to the optical theorem of scattering theory [7] which
requires the conservation of particle number (for inelastic scatter-
ing the number of the particles participating in the elastic scatter-
ing). Using Eq. (5) the condition of complete screening can be
rewritten in the explicit form

Z1 ¼ NindðvÞ ð8Þ

with v ¼ �hk=me. If the projectile carries with it Nb bound electrons,
in Eq. (8) one should simply replace Z1 with Z1 � Nb [8]. In order to
represent the dynamic FSR, Eq. (8), in a more familiar form (as a
sum over partial waves) we insert Eq. (7) into Eq. (5) and integrate
by parts assuming that d‘ð0Þ ¼ 0, which yields

Z1 ¼
2
p
X1
‘¼0

ð2‘þ 1ÞD‘ðvÞ ð9Þ

with the ‘‘dynamic phase shifts’’

D‘ðvÞ ¼
1

4k

Z kþkF

jk�kF j
1þ k2

F � k2

q2

 !
d‘ðqÞdq: ð10Þ

Eqs. (9) and (10) are identical to the ‘‘extended’’ FSR of Lifschitz and
Arista [2] for a DEG, which was deduced having recourse to geomet-
rical arguments about the Galilean transformation of the Fermi
sphere. The extension of the dynamic FSR to an electron gas at high
temperature has been outlined by Nagy and Bergara [1].

It is straightforward to see that in the limit v ! 0 Eq. (10)
reduces to D‘ð0Þ ¼ d‘ðkFÞ which together with Eq. (9) constitutes
the static FSR [8]. In the high-velocity limit, within the leading
order from Eq. (10) one gets D‘ðvÞ ¼ v2

F=3v2
� �

kFd
0
‘ðkÞ, where

vF ¼ �hkF=me is the Fermi velocity [2]. Interestingly, the dynamic
phase shifts are expressed in the high-velocity regime through
the momentum derivative of the ordinary phase shifts.

3. First- and second-order Born approximations

With the theoretical formalism presented in Section 2, we take
up the main topic of this paper, namely to study the dynamic FSR
for a point-like ion moving in a DEG within up to the B2 approxi-
mation. Hence we look for the scattering amplitude in Eq. (6) in
a perturbative manner writing f ¼ f B1 þ f B2, where f B1 and f B2 are
the first- and second-order scattering amplitudes, respectively.
Similarly, we expand Servadio’s function perturbatively to the sec-
ond order, A ¼ AB1 þ AB2. Introducing in Eq. (7) the corresponding
expansion of the phase shifts, d‘ ¼ d‘;B1 þ d‘;B2, we get with the help
of Eq. (19) in [6]

AB1ðqÞ ¼
@

@q
qfB1ðq;0Þf g; ð11Þ

AB2ðqÞ ¼
@

@q
qRe½f B2ðq;0Þ�f g; ð12Þ

where f B1ðq;0Þ and f B2ðq;0Þ are the B1 and B2 forward-scattering
amplitudes. Then, using Eqs. (23) and (26) in [6] we arrive at

AB1ðqÞ ¼ �
me

2p�h2
eV ð0Þ; ð13Þ

AB2ðqÞ ¼
4m2

e

ð2pÞ3�h4

Z 1

0

eV 2ðjÞ j2 dj
j2 � 4q2 ; ð14Þ

where eV ðqÞ is the Fourier transform of the electron–ion interaction
potential VðrÞ given by

eV ðqÞ ¼ Z 1

0
VðrÞ j0ðqrÞ4pr2 dr ð15Þ
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