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a b s t r a c t

For non-stationary stochastic processes, the classic integral expression for computing the autocorrelation
function from the evolutionary power spectral density (evolutionary spectrum) developed by Priestley is
not invertible in a unique way. Thus, the evolutionary spectrum cannot be determined analytically from a
given autocorrelation function. However, the benefits of an efficient inversion from autocorrelation to
evolutionary spectrum are vast. In particular, it is more straightforward to estimate the autocorrelation
function from measured data, yet efficient simulation depends on knowing the evolutionary spectrum.
This work examines the existence and uniqueness of such an inversion from the autocorrelation to the
evolutionary spectrum under a certain set of conditions. It is established that uniqueness of the inversion
is likely although it is not proven. A methodology is presented to determine the evolutionary spectrum
from a prescribed or measured non-stationary autocorrelation function by posing the inversion as a
discrete optimization problem. This method demonstrates the ability to perform the inversion but is
computationally very expensive. An improved method is then proposed to enhance the computational
efficiency and is compared with some established optimization methods. Numerical examples are pro-
vided throughout to demonstrate the capabilities of the proposed methodologies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction & motivation

Through increases in both the computational power and effi-
ciency of algorithms available to scientists and engineers, it is be-
coming increasingly possible to consider problems in a fully sto-
chastic framework that were once only approachable deterministi-
cally. Monte Carlo simulation remains at the forefront of the analysis
methods for its robustness. In fact, for many classes of problems (and
several of practical interest), Monte Carlo simulation is the only
option to fully characterize the system. This may be true, for ex-
ample, in evaluating the structural response to seismic ground
motion; characterizing the morphology of statistically non-homo-
geneous randommedia – like Functionally Graded Materials (FGMs),
evaluating the response of bridges to wind loads; and is particularly
true when strong nonlinearities are present.

The bedrock of Monte Carlo methods is the efficient and ac-
curate simulation of sample realizations. For the examples pre-
viously listed, this translates to generating sample earthquake
time histories, material morphologies, and wind velocity time
histories/fields, respectively. The Spectral Representation Method
(SRM) [1] is widely used for the simulation of sample realizations

of Gaussian stochastic processes and recent developments have
widely enhanced its applicability for non-Gaussian processes [2–4]
by coupling with Grigoriu's translation process theory [5]. SRM is
the method employed in this work. However, there are many other
simulation techniques available (e.g. Autoregressive Moving
Average (ARMA) models [6–11] and the Karhunen–Loève expan-
sion [12–15], among others) that will not be discussed in detail in
this work. The SRM, in particular, is commonly used in the fields of
civil engineering and applied mechanics, due partly to its nice
physical interpretation afforded by the trigonometric basis func-
tions that give the power spectral density function units of power
at different frequencies. Additionally, it is comparatively mathe-
matically simple and numerically easy to implement, as the si-
mulated samples are generated by a finite sum of cosine functions
or fast Fourier transform.

This work is specifically concerned with non-stationary sto-
chastic processes.1 A process is said to be non-stationary if its
statistical properties vary in time. There are, of course, varying
degrees of non-stationarity. We specifically focus on a class of non-
stationary processes whose second-order statistics (correlations/
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1 The terms “non-stationary” and “non-homogeneous” are used inter-
changeably throughout this paper, as the theory utilized herein is analogous for
both random processes and random fields.
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power spectra) are time dependent. In the physical interpretation
of the SRM, this means that the frequency content is time varying.
Practical examples of non-stationary processes are ubiquitous,
even when limited just to the fields of civil engineering or applied
mechanics. Seismic ground motion time histories, for example,
exhibit both amplitude and frequency modulation; as demon-
strated in Fig. 1 which shows a clear amplitude and frequency
modulation. The latter is more readily observed in Fig. 1(b) where
it can be seen, qualitatively, that the predominant frequencies in
the two displayed time windows are significantly different – the
top having higher frequency content than the bottom. As another
example, Functionally Graded Materials (FGMs) are a class of
composites where a gradient exists in stochastic material mor-
phology and properties. FGMs occur both naturally (e.g. bamboo
possesses a radially increasing fiber density to resist wind induced
bending moments [17,18]) and are synthetically engineered (Fig. 2
shows a two phase aluminum – high density polyethylene com-
posite with varying volume fraction). To capture this spatial var-
iation, the morphology may be characterized by a non-homo-
geneous stochastic field.

Modeling non-stationary processes represents a particularly
challenging problem for which several approaches have been pro-
posed. Limiting these approaches to those possessing a direct phy-
sical interpretation (i.e. frequency-based), we see that several dif-
ferent theories for modeling the evolving spectral characteristics
exist including, most notably the Instantaneous Power Spectrum
[19], the Wigner–Ville Spectrum [20–22], wavelet transforms [23–
30], and Priestley's theory of evolutionary power [31]. Among these,
Priestley's theory is particularly useful because its defining quantity,
the evolutionary power spectral density (or evolutionary spectrum –

ES) preserves the features of the classical stationary power spectral
density as discussed in the following.

Consider a zero mean non-stationary stochastic process X(t)
possessing autocorrelation function (ACF) R s t,( ) that admits a re-
presentation of the form [31]:

R s t E X s X t s t d, , , 1∫ ϕ ω ϕ ω μ ω( ) = [ ( ) ( )] = ( ) ( ) ( ) ( )−∞

∞
⁎

where t,ϕ ω( ) represents a “family” of functions defined on the real
line and μ ω( ) is a measure also defined on the real line. In general,
X(t) can be expressed as

X t t dZ, 2∫ ϕ ω ω( ) = ( ) ( ) ( )−∞

∞

where Z ω( ) is an orthogonal process with

E dZ d 32ω μ ω[| ( )| ] = ( ) ( )

For processes defined on a finite interval (i.e. t T0 ≤ ≤ ), such a
representation always exists with t,ϕ ω( ) denoting the eigenfunc-
tions of the covariance kernel; which serves as the basis of the
Karhunen–Loève decomposition. The theory of evolutionary
power, on the other hand, enforces a family of amplitude modu-
lated complex exponentials such that

t A t e, , 4i tϕ ω ω( ) = ( ) ( )θ ω( )

where A t, ω( ) is the so-called modulating function that can be
expressed as

A t e dH, , . 5
i t∫ω ω θ( ) = ( ) ( )
θ

−∞

∞

If dH ,ω θ| ( )| possesses an absolute maximum at θ¼0, the process is
called oscillatory. Thus, if θ ω( ) is a single-valued function of ω, the
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Fig. 1. Example seismic ground acceleration: 1989 Loma Prieta earthquake. Data source: Pacific Earthquake Engineering Research Center (PEER) [16], Record #: NGA0779,
ATH: LOMAP/LGP-UP. (a) Ground acceleration and (b) zoom details on ground acceleration.

Fig. 2. Sample functionally graded material: aluminum particulates in a high
density polyethylene matrix (AL-HDPE). Image courtesy of Po-Hua Lee, Columbia
University, 2013.
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