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a b s t r a c t

In this paper the first passage problem is examined for linear and nonlinear systems driven by Poissonian
and normal white noise input. The problem is handled step-by-step accounting for the Markov prop-
erties of the response process and then by Chapman–Kolmogorov equation. The final formulation con-
sists just of a sequence of matrix–vector multiplications giving the reliability density function at any time
instant. Comparison with Monte Carlo simulation reveals the excellent accuracy of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The first passage problem has been investigated in many
publications over almost a century because of its relationship to
the safety of structural systems under random excitations. The
exact solution to the first passage problem is not available because
even in the case of a normal white noise process the Fokker–
Planck equation with associated boundary conditions is in general
unknown [1]. Many approximate methods have been proposed [2–
7], however, the analytical approximation methods are available
only for light damping for the stochastic averaging, weak non-
linearity and Gaussian approximations. First passage time for lin-
ear systems with stochastic coefficients has been addresses by
using Pontryagin–Vitt equations in [8]. A quite different approach
for non-linear equations driven by normal white noise has been
proposed in [9] by using a generalized cell mapping method. Other
relevant contributions on the subject may be found in [10–12].

In order to determine the probability distribution of the first
passage time, efficient solution of the Fokker–Planck equation is
necessary. Moreover, we need a solution of the problem step-by-
step in order to cancel the trajectories that for the first time leave
the safe domain (absorbing barrier problem). In order to have such
a control on the path of the trajectories the only way is using the

so-called Path Integration (PI) method. It mainly consists of using
the Chapman–Kolmogorov (CK) equation giving the probability
density at a certain time instant as weighted sum of the con-
tributions of the various trajectories that in a previous time instant
start with deterministic initial condition. As the interval between
the two time instants becomes small, then the so-called short time
Gaussian approximation [13] remains still valid and the step-by-
step solution technique of the CK equation reverts to the PI
method. Many papers have been devoted to this subject for nor-
mal [14–19] and Poissonian white noise as well as renewal pro-
cesses [20–23].

The PI method is versatile and in [24] it has been used for
solving the first passage problem. It mainly consists in defining the
so-called reliability function which is a function giving the prob-
ability that the various trajectories will remain inside the safe
barrier conditioned by the fact that each of them never crosses the
barrier up to the observation time.

In this paper, by using the concepts exploited in [24] the first
passage problem is revisited in the light of the cell mapping
method and extended to the case of Poissonian white noise input.
It is shown that the reliability function by discretization of the
Chapman–Kolmogorov equation may be easily implemented in a
computer program as just a sequence of matrix–vector multi-
plications whose sizes depend on the threshold barriers and the
spatial discretization steps. Moreover, as the input is stationary the
reliability function is governed by a transition matrix that does not
explicitly depend on time so that it can be computed once
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beforehand.
The paper is organized as follows. In Section 2 the PI, some

well-known concepts of the PI method for both normal and
Poissonian white noise are presented for clarity's sake as well as
for introducing appropriate notations. These concepts are framed
in the context of a cell-mapping method. In Section 3 the first
passage time by using PI method is presented for both normal and
Poissonian white noise for the half oscillator. In Section 4 the ex-
tension to a single degree-of-freedom oscillator is presented while
in Section 5 the numerical applications are presented and the re-
sults are compared with those obtained from Monte-Carlo
simulation.

2. Path Integration method

In this section some preliminary concepts on Path Integral
Solution (PIS) will be introduced for clarity's sake as well as for
introducing appropriate notation. Let any nonlinear system be
governed by the equation

X f X t W t, 1̇ + ( ) = ( ) ( )

where f X t,( ) is any non-linear function of the response process X
(t) and W t( ) is a normal white noise characterized by the strength
Q. This means that

E W t W t Q t t 21 2 1 2δ[ ( ) ( )] = ( − ) ( )

where E [·] denotes ensemble average and δ (·) is Dirac's delta
function. The response process X(t) is Markovian and the Chap-
man–Kolmogorov equation

p x t p x t y t p y t y, , , , d 3X X X∫τ τ( + ) = ( + | ) ( ) ( )−∞

∞

holds true. In Eq. (3) p x t,X ( ) is the probability density function
(PDF) of the process X(t) at time t and p x t y t, ,X τ( + | ) is the
conditional PDF at time t τ+ for an assigned (deterministic) initial
condition y at time t. Eq. (3) is valid for any value of τ. However, for
finding the evolution in time of the PDF of the response process X
(t), the Chapman–Kolmogorov equation is written for a small value
of τ that will be denoted as tτ = Δ , and Eq. (3) particularized for

tτ = Δ is usually called Path Integral (PI).

2.1. Gaussian white noise

In this case the conditional PDF in Eq. (3) is determined from
the so-called short time Gaussian approximation [13]. A deeper
insight into the concept is necessary in order to clearly understand
the use of Eq. (3) particularized for tτ = Δ . The conditional PDF in
Eq. (3) is the solution to the Fokker–Planck (FP) equation asso-
ciated to Eq. (1) with the assigned deterministic initial condition
x t y0( ) = in t0. It is obvious that if we know the transient solution
of the FP equation for any value of y we may also solve the FP
equation for the original system (1). In order to get the conditional
PDF in Eq. (3) we subdivide the t-axis into small intervals of equal
length tΔ and rewrite this equation into the form

p x t p x t t y t p y t y, , , , d 4X k t X k X k∫( + Δ ) = ( + Δ | ) ( ) ( )−∞

∞

Then we define a new process X τ¯ ( ) governed by the equation

X f X W t X y, ; 0 5kτ τ τ¯ ̇ + ( ¯ ( ) ) = ( + ) ¯ ( ) = ( )

This situation is depicted in Fig. 1.
Now in virtue of the short time Gaussian approximation since

E X t t y f y t t
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By inserting Eq. (7) into Eq. (4) the step-by-step-solution may be
readily found.

If the system is linear, namely f X t aX,( ) = (a 0> ), then the
exact values of the mean and the variance of the process X t¯ ( ) is
readily found in the form

⎛
⎝⎜

⎞
⎠⎟t y a t t

Q
a

a texp ;
2

1 exp 2
8X X

2μ σ(Δ ) = ( − Δ ) (Δ ) = − ( − Δ )
( )

¯ ¯

Now we may give an interpretation of Eq. (4) that will be useful for
the first passage problem. We have the process X(t), solution of Eq.
(1) from the whole sample functions, some of them lie within the
interval y y y, d[ + ], and this happens with probability p y t y, dX ( ) .
These trajectories generate the process X t¯ ( ) that is characterized in
t tk + Δ by the conditional PDF given in Eq. (7), then Eq. (4) gives
p x t t,X k( + Δ ) as the sum of the contribution of p x t,X ( Δ )¯ weighted
by p x t,X k( ) (see Fig. 1). This perspective is important for the first
passage problem since, as the cell mapping method [9] we have
control on the various trajectories.

2.2. Poissonian white noise

For the case of Poisson white noise the PI has been performed
in [17]. Herein this is briefly summarized. Let the equation of
motion (1) be driven by a Poisson white noise Wp(t). It is defined
as

W t z t t
9

p
k

N t

k k
1

∑ δ( ) = ( − )
( )=

( )

where zk is the k-th realization of a random variable Z with as-
signed probability density function PZ(z), tk is the k-th realization
of a random variable T distributed in time according to the Poisson
law with expected arrival rate λ and N(t) is the number of spikes
within the interval t0,[ ]. A sample function Wp(t) of such a process
is depicted in Fig. 2(a).

By integrating Eq. (1) for each sample function we get the

Fig. 1. Trajectories and PDF of the process X τ¯ ( ).
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