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Equivalent linearization consists in replacing a nonlinear system with an equivalent linear one whose
parameters are tuned with regard to the minimization of a suitable function. In particular, the Gaussian
equivalent linearization expresses the properties of an equivalent linear system in terms of the mean
vector and the covariance matrix of the responses, which are the unknowns of the optimization problem
in a spectral approach. Even though the system has been linearized, the resulting set of equations is
nonlinear. The computational effort in this method pertains to the solution of a possibly large set of
nonlinear algebraic equations involving integrals and inversions of full matrices. This work proposes to
develop and apply an asymptotic expansion-based method to facilitate and to improve the statistical
linearization for large nonlinear structures. The proposed developments demonstrate that for slightly to
moderately coupled nonlinear systems, the equivalent linearization can be applied with an appropriate
modal approach and eventually seen as a convergent series initiated with the stochastic response of a
main decoupled linear system. With this method, the computational effort is attractively reduced, the
conditioning of the set of nonlinear algebraic equations is improved and inversion of full transfer
matrices and repeated integrations are avoided. The paper gives a formal description of the method and
illustrates its implementation and performances with the computation of stationary responses of

nonlinear structures subject to coherent random excitation fields.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A classical result from probabilistic theory states that linear
deterministic systems driven by Gaussian processes respond with
Gaussian processes. The joint probability density function of the
responses is thus completely characterized by a mean vector and a
covariance matrix. However, for nonlinear systems or in the case
of non-Gaussian excitations, the computation of the response of
the system is more complicated, partly due to the statistical
polymorphism of a non-Gaussian process.

Discarding straightaway the Fokker-Planck equation due to the
curse of dimensionality [1,2], the Monte Carlo approach is considered
as the only tractable method to compute the non-Gaussian response
of large-dimensional nonlinear systems [3,4]. Briefly, the method
consists in generating samples of the excitation to compute samples
of the system response by means of deterministic solvers. Although
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the simulation-based framework is extensively used in risk analysis
and risk quantification [5], the computational burden remains a major
drawback of this method. Indeed, the generation of random samples
from coherent random fields, as wind acting on large structures [6,7],
may be prohibitive. Therefore, the use of approximate methods is
attractive, especially in a design stage or in an optimization procedure
involving many parameters and repeated operations.

Many approximate methods have been developed for decades:
the averaging method [8], the equivalent linearization [9,10],
quadratization and cubicization [11], non-Gaussian closures [12]
are seemingly the most famous. Among them, the equivalent
linearization, originally introduced by Botoon and Caughey
[13,14], can be used for the analysis of high-dimensional nonlinear
structures, as encountered in earthquake engineering [15-17] or in
wind engineering [18-20]. The main idea of the equivalent
linearization consists in replacing the nonlinear system with an
equivalent linear one by minimizing an error criterion depending
on the parameters of the equivalent system. Though different
criteria have been proposed [9,21], the most robust and advanta-
geous one remains the minimization of the mean squared dis-
crepancy, by tuning the parameters of the equivalent system,
especially as the excitations are diffusive processes.
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The equivalent linearization method benefits from valuable
features of linear systems. First, the modal projection can be used
to reduce the size of the equation of motion. Second, it is more
convenient to work in the frequency domain for stationary
processes, while realistic loadings are usually modeled by large
Power Spectral Density (PSD) matrices, as it is the case for
coherent wind or seismic fields. Finally, the input-output Gaus-
sianity is preserved. Consequently, the equivalent linearization
may compete with Monte Carlo simulation in the estimation of the
first two statistical moments.

In the linearization method, assumptions on the statistical
distribution of the response are formulated: the Gaussian Equiva-
lent Linearization (GEL) supposes that the responses of the system
are Gaussian processes, but statistical linearization methods have
been extended to non-Gaussian processes [22-24] with limited
success. The GEL expresses the properties of the equivalent linear
system in terms of the mean vector and the covariance matrix of
the response of the system. Even though the system has been
linearized, the set of equations to calculate the covariance matrix
of the system is nonlinear. The computational effort in this method
pertains to the solution of a possibly large set of nonlinear
algebraic equations, all the more for large nonlinear structures.

This work proposes to develop and apply a perturbation
approach, as formerly investigated by the authors for deterministic
[25] and stochastic [26] linear systems, to facilitate and to improve
the GEL of a nonlinear structure subject to stationary loadings. Our
approach exposed in a stationary setting can be extended to some
classes of evolutionary problems [27,28] (alternative to fully
nonstationary excitations [29]), provided the quasi-stationary
assumption is justified, i.e. the natural period of the structure is
small compared to the duration of the evolutionary random
excitation [30,31].

Since many optimization algorithms can be used to solve the
nonlinear equation set inherent to statistical linearization, the
development of a solver accounting for the specificities of this set
has not often been addressed by the research community. Pro-
vided the excitation can be modeled by filtered white noises, the
covariance matrix of the response is expressed by a Lyapunov
equation. This equation can be solved in particular by direct
algorithm [32-34]. Nonetheless, if the excitation is modeled as a
coherent field in the frequency domain, the It6 procedure cannot
be applied. In the context of equivalent linearization with a
spectral approach, a fixed-point algorithm is a convenient and
readily implemented method [10]. However, this algorithm
behaves poorly in terms of convergence [35], especially for large
equation sets. Consequently, a gradient-based formulation is pre-
ferred to circumvent some limitations.

The proposed developments demonstrate that for slightly to
moderately coupled nonlinear systems in a suitable modal basis,
the equivalent linearized response can be seen as a convergent
series of correction terms initiated with the stochastic response of
a main decoupled linear system. This work shows that the concept
of asymptotic expansion of a modal transfer matrix might be
efficiently used to enhance the GEL technique. Indeed, this
expansion allows us to compute rapidly the Jacobian matrix
required in a gradient-based method. The conditioning of the
system is also improved, especially for large structures. The
computational effort is thus attractively reduced, while preserving
the advantages of spectral analysis.

Because simulation techniques or alternative exact approaches
would equally perform in small-size structures with simple load-
ings, a specific attention in the developments is dedicated to high-
dimensional structures subject to coherent random excitation
fields such as those encountered in wind and earthquake engi-
neering. The proposed method is capable of dealing with non-
linear conservative as well as dissipative forces, either affecting

some degrees of freedom only, or more regularly distributed in the
whole structure.

First, the philosophy of the equivalent linearization is exposed,
then the asymptotic expansion of a modal transfer matrix is
developed in the context of GEL. A Newton-Raphson procedure
applying the asymptotic expansion is then described. Finally,
illustrated examples are proposed to emphasize the pertinence
of the method and to highlight the underlying assumptions.

2. Spectral strategy for stochastic linearization of large
structures

On a probability space (@, &, P), the equation of motion of an
n-DOF nonlinear system is

My +Cy +Ky+g(y.y)=f, M
where M, C and K are the n x n-dimensional mass, damping and
stiffness matrices of the structure, respectively, f£(t,0):

R* x O—R" is the vector of the random exogenous Gaussian
forces and the dot denotes the time derivative. The vector y(t, ) :
R* x O—R" gathers the nodal displacements expected to be non-
Gaussian processes due to the nonlinear forces gathered in the
vector function g(y.,y): R" x R"—R". With this formalism, the
equation of motion is split into four contributions: inertial forces,
internal linear forces, internal nonlinear forces and exogenous
random forces. Actually, in these developments, we consider
nonlinear conservative or dissipative forces only depending on
the nodal displacements of the structure (no history variable).
Discarding the nonlinear forces g(y,y) in (1) produces a linear
governing equation, referred to as the linear subsystem in the
sequel.

In the considered problem, the size n of the system is possibly
large, and the exogenous forces are characterized by a PSD matrix
S¢(w) with possibly complex expressions as typically encountered
in realistic wind turbulence model [36] or spatial coherence in
seismic engineering [37]. For the sake of clarity in the following
analytical developments, only antisymmetric nonlinear forces and
zero-mean excitation processes are considered. Otherwise, some
minor modifications to the method must be operated to take into
account the mean response and the non-centered statistical
moments [10].

The stochastic linearization aims at replacing Eq. (1) by the
equation of motion of a n-DOF equivalent linear structure. The
equivalent equation of motion reads

M5 + (C+ Cog)X + (K+ Keg)X =, 2)

where x and x are the Gaussian nodal displacements and velo-
cities of the equivalent linear system, respectively, and with Keq
and C.4 the equivalent stiffness and damping matrices, respec-
tively [10]. The probabilistic response of the system is thus
completely characterized by the symmetric covariance matrices
2« and Xy, obtained by integration of the corresponding PSD
matrices:

= / Sydw, and T, = / s, dw, 3)
R JR

which are themselves obtained by left- and right-multiplication of

S¢(w) by the nodal frequency response function of the system [38].
The equivalent stiffness and damping matrices in (2) are

determined by minimizing the error function £ [8], defined as

E = E[(KegX + CogX — 8(X, X))(KegX + CogX — &(X, X)) ] 4)

with E[-] being the expectation operator. Because the covariance
between displacements and velocities is equal to zero in a
stationary setting E[xx'] =0, the equivalent matrices Keq and Ceq
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