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a b s t r a c t

This paper introduces a new approach for parameter estimation and model update based on the notion
of fidelity maps. Fidelity maps refer to the regions of the parameter space within which the discrepancy
between computational and experimental data is below a user-defined threshold. It is shown that
fidelity maps provide an efficient and rigorous approach to approximate likelihoods in the context of
Bayesian update or maximum likelihood estimation. Fidelity maps are constructed explicitly in terms of
the parameters and aleatory uncertainties using a Support Vector Machine (SVM) classifier. The
approach has the advantage of handling numerous correlated responses, possibly discontinuous,
without any assumption on the correlation structure. The construction of accurate fidelity map
boundaries at a moderate computational cost is made possible through a dedicated adaptive sampling
scheme. A simply supported plate with uncertainties in the boundary conditions is used to demonstrate
the methodology. In this example, the construction of the fidelity map is based on several natural
frequencies and mode shapes to be matched simultaneously. Various statistical estimators are derived
from the map.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Computational models are used, for instance, to predict the
static or dynamic behavior of structures. However, there might be
marked discrepancies between the prediction of the model and
experimental data. In order to reduce this difference, the model
needs to be calibrated (or updated) by searching parameter values
(e.g., material properties) that best “match” the data. For example,
in modal analysis, the characteristics of the model (e.g., stiffness
and mass distribution) will be modified so as to match experi-
mental natural frequencies and mode shapes [1].

In engineering applications, the most widely used technique is
the least square approach. However, uncertainties might have a
pronounced effect on the responses of the system and this
approach, often implemented in a deterministic way, is in general
not suitable [2,3]. For this reason, statistical approaches have been
favored to extract distributions of update parameters and
responses. The two most common statistical approaches are the
maximum likelihood estimate and Bayesian update. While the
maximum likelihood approach [4,5] finds the most “probable”
values of the parameters to be estimated, the Bayesian method
[6,7] focuses on refining the parameter distributions inferred from
previous knowledge.

At the core of both approaches, lies the computation of the
likelihood. In most engineering applications, the likelihood is difficult
to compute and is approximated using assumptions on the correlation
structure of the responses (e.g., independence). This difficulty is
further exacerbated by computationally intense simulations, large
number of responses [8,9], and discontinuous responses.

The proposed update approach is designed to provide a flexible
scheme which tackles the aforementioned difficulties. This is done
through the identification of the regions of the parameter space
where the discrepancy between model and experimental outputs
is below a given threshold. These regions form a “fidelity map” and
can be shown to provide a rigorous and efficient approximation of
the likelihood without restrictive assumptions (Section 2 provides
an illustrative example of a fidelity map).

The boundaries of the fidelity maps are constructed using a
Support Vector Machine (SVM) which is a classification technique.
It is used to explicitly separate data belonging to two classes
[10–13]. In the context of the fidelity maps, this binary classifica-
tion is performed based on the discrepancy between computa-
tional and experimental data which is either smaller or larger than
a given user-defined threshold. In order to obtain an accurate
fidelity map using a reasonable number of simulation calls, the
SVM boundary is refined using an adaptive sampling scheme [14].
That is, most of the computational cost is concentrated in the
construction of the fidelity maps. The likelihood can then be
efficiently obtained as a sub-product of the fidelity map.

Many frameworks for model update have been developed. Of
particular importance and impact is the work by Kennedy and
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O'Hagan [15] which has become a reference in the domain. For
instance, the use of a Gaussian process was initially introduced in
this work. This approach was subsequently used in other strategies
[16]. There is also a large body of literature dedicated to Bayesian
approaches [17,18]. The proposed work sets itself apart from
existing approaches by enabling model updating for problems
with numerous responses (potentially discontinuous) without any
a-priori on the correlation structure which is implicitly accounted
for during the construction of the fidelity map. This flexibility
stems from the use of a classification technique such as SVM for
the construction of the fidelity map boundaries.

This paper is constructed as follows. Section 2 provides the
notation and the main concepts of the proposed approach. Section 3
presents the statistical estimators used. Section 4 describes the
fidelity map and the approximation of the likelihood. Section 4.1
provides a background on SVM classifiers. Section 4.2 describes the
adaptive sampling scheme used to accurately build the fidelity
maps. Finally, Section 5 provides results on a demonstrative
example consisting of a plate with uncertainty in the boundary
conditions. In the example, several frequencies and mode shapes
are to be matched simultaneously. For the sake of completeness, the
results are compared to approaches where the responses are
assumed independent or if a residual, which encompasses all the
responses within one quantity, is used.

2. Illustrative example and notations

Consider the responses y of a model and the corresponding
experimental measurements yexp. The responses of the system are
governed by two types of parameters: the first set are the
parameters to estimate x (e.g., material properties) while the
second one, A, are the “aleatory” parameters which are not to
be estimated but introduce uncertainty (e.g., external load). The
probability density function (PDF) of a random variable X is noted
fX and its cumulative distribution function (CDF) is noted FX .

As an illustrative example, consider a model in the form of a
cantilever column (e.g., representative of a building) subjected to
wind loading (Fig. 1(a)). In this academic example, we wish to
estimate the bending stiffness of the column K � x based on a set
of experimental data yexp (e.g., deflection δ) knowing that the
column is subjected to a random load F � A with known probabil-
istic distribution.

Fig. 1(b) depicts the construction of the fidelity map corresponding
to p experiments and n responses (e.g., displacements, accelerations,
etc.) per experiment. The fidelity map defines the region of the space
where the relative discrepancy between model and experiments Δfi is
lower than 1% for every response. It is accurately constructed with a
Support Vector Machine classifier and an adaptive sampling scheme
described in Section 4. The fidelity map is then used to approximate
the likelihood (Fig. 2) which allows one to update the model through
maximum likelihood or Bayesian update. For the reader who is not
familiar with these statistical estimators, they are described in the
following section which also underlines the advantages of using a
fidelity map for their computation.

3. Background

3.1. Maximum likelihood estimate

Maximum likelihood estimates (MLE) were originally designed
for the statistical inference of hyper-parameters of distributions:

θMLE ¼ argmax
θ

∏
nv

i ¼ 1
fXðxijθÞ ð1Þ

where x¼ ½x1;…; xnv � are nv i.i.d observations of a random variable
X following a PDF fXðxjθÞ of hyper-parameters θ. This notion can be
extended to engineering applications by considering that some
output responses y follow a joint PDF where uncertainties are due
to A and parametrized by x (i.e., fyðx;AÞðyjxÞ). Therefore, the max-
imum likelihood estimate for parameter identification reads:

xMLE ¼ argmax
x

∏
p

i ¼ 1
fyðx;AÞðyexp;ðiÞjxÞ ð2Þ

where yexp;ðiÞ are the ith experimental set of n responses. In the case
of a single set of measurements (p¼1), as used in this work, Eq. (2)
becomes:

xMLE ¼ argmax
x

fyðx;AÞðyexpjxÞ ð3Þ

3.2. Bayesian estimate

While MLE follows a frequentist approach, and considers x as
deterministic, Bayesian updating considers X as random variables.
Bayesian estimators are derived from the Bayes formula:

fAjBfB ¼ fBjAfA

Specializing it to engineering applications:

fXðxjyexpÞ ¼
fyðx;AÞðyexpjxÞfXðxÞ

fyðX;AÞðyexpÞ
ð4Þ

where:

(i) fXðxjyexpÞ is the posterior distribution;
(ii) fyðx;AÞðyexpjxÞ is the likelihood;
(iii) fX is the prior distribution;
(iv) fyðX;AÞðyexpÞ is a normalizing constant which represents the

total probability density to observe yexp.

Fig. 1. Illustrative example. Calibration of the stiffness K of a column subjected to a
random (aleatory) load F based on experimental responses. (a) Model and
(b) fidelity map.

Fig. 2. The fidelity map is then used to build an approximation of the likelihood (up
to a constant).
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