
Nonstationary response of nonlinear oscillators with optimal bounded
control and broad-band noises

Luyuan Qi a,n, G.Q. Cai b, Wei Xu a

a Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
b Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

a r t i c l e i n f o

Article history:
Received 5 August 2013
Received in revised form
26 July 2014
Accepted 5 August 2014
Available online 17 August 2014

Keywords:
Broad-band excitation
Nonstationary response
Probability density function
Stochastic averaging
Stochastic optimal control

a b s t r a c t

Nonstationary response of nonlinear oscillators with optimal bounded control and broad-band noise
excitations is investigated. First, the stochastic averaging method is applied to obtain an averaged Itô
stochastic differential equation for the amplitude process. Then, the dynamical programming equation is
employed to minimize the system response and establish an optimal control law with a control
constraint. The nonstationary probability density of the amplitude process can be solved from the
corresponding Fokker–Planck–Kolmogorov equation by using the Galerkin method if only external
excitations exist. In the case of parametric excitations are present, Monte Carlo simulations can be
carried out for the simplified averaged system of the amplitude process with much less computational
efforts. Two examples are given to illustrate the feasibility of the proposed procedure and the
effectiveness of the optimal control strategy. The accuracy and efficiency of the proposed procedure
are substantiated by those obtained from Monte Carlo simulation of the original system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Response prediction of mechanical and structural systems
subjected to random excitations is important for engineering
practice [1,2], and has been extensively studied for several
decades. The nonstationary response of a system immediately
after exposing to random excitations, also called the transient
response, is of importance in reliability analysis. One typical
example is a structure in an earthquake, in which case the
transient response of the structure during the first several seconds
plays a dominant role. Exact solutions for the nonstationary
probability density functions of system responses can only be
obtained for some linear systems and a few special first-order
nonlinear systems [3–5]. For general nonlinear systems, several
approximate procedures have been proposed, such as the path
integration [6], the cell mapping method [7], and the Galerkin
method [8]. In recent years, the Galerkin method and the stochastic
averaging method are adopted to explore the nonstationary
responses of stochastic nonlinear systems [9–11]. In most of these
studies, the random excitations were assumed to be Gaussian white
noises due to the ease of mathematical treatment. However, the
mathematical treatment is quite complex in the case of non-white
random excitations.

If the system response is required to be below a critical level
for safety consideration, then a control device with an optimal
algorithm may be needed. The theory of stochastic optimal control
has been well developed mathematically [12–16]. Two well-
known principles for the stochastic optimal control mainly in the
fields of economics and finance are Pontryagin's maximum prin-
ciple and Bellman's dynamical programming. In the engineering
field, the linear quadratic Gaussian (LQG) control strategy is widely
adopted. Recently, a nonlinear stochastic optimal control strategy
was proposed by Zhu and his co-workers [17,18] based on the
stochastic dynamical programming [19]. It has been proved to be
more efficient than LQG control, and was applied to various
nonlinear stochastic systems in the stationary state [20–24].
Combined with the Galerkin method, this control strategy was
extended to the nonstationary response of a Rayleigh–Duffing
oscillator under external broad-band excitations [25].

In this paper, the procedure developed in [25] is extended to
general nonlinear oscillators to control the nonstationary
response. The system possesses linear stiffness and nonlinear
damping. The random excitations are assumed to be stationary
broad-band processes which may be correlated, and they may be
external and/or parametric. The stochastic averaging method is
applied to the system to obtain an Itô stochastic differential
equation of the amplitude envelope. Using the stochastic dynami-
cal programming, the nonstationary optimal control algorithm is
applied. If only external excitations are present, the Fokker–
Planck–Kolmogorov (FPK) equation governing the nonstationary
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probability density of the amplitude process is then derived, and
an approximation procedure of the Galerkin method is carried out
to solve this FPK equation. This method is illustrated by a
numerical example, and the results obtained are substantiated
by those from Monte Carlo simulation (MCS). In the case of
parametric excitations existing, MCS can be performed to the
averaged one-dimensional system with much less computational
time. The second example shows the feasibility of the proposed
method.

2. The stochastic model under feedback control

Consider a controlled nonlinear system under random excita-
tions,

€Xþω2
0Xþ2αω0

_Xþ f ðX; _XÞ _X ¼ ∑
n

k ¼ 1
gkðX; _XÞξkðtÞþuðX; _XÞ ð1Þ

where f ðX; _XÞ _X represents the nonlinear damping forces, uðX; _XÞ
denotes a feedback control force, and ξkðtÞ are broad-band sta-
tionary random processes with zero means and correlation func-
tions RkrðτÞ, namely,

RkrðτÞ ¼ E½ξkðtÞξrðtþτÞ� ð2Þ
Each excitation term in (1) could be either external if function

gkðX; _XÞ is a constant or parametric if gkðX; _XÞ depends on X and/or
_X. It is assumed that the damping forces, the excitations, and the
control force are weak so that the stochastic averaging method is
applicable. In more rigorous mathematical terms, each damping
term is of an order ε (0oεo1), each random excitation term
gkðX; _XÞξk is of an order ε1=2, and the feedback control force is of an
order ε, so that their contributions to the system response are
commensurable.

2.1. Stochastic averaging procedure

Consider the following transformation:

XðtÞ ¼ AðtÞ cos ΦðtÞ ð3aÞ

_XðtÞ ¼ �AðtÞω0 sin ΦðtÞ ð3bÞ

ΦðtÞ ¼ω0tþΘðtÞ ð3cÞ
where A(t), Φ(t), and Θ(t) are stochastic processes. Using Eqs.
(3a)–(3c), the original system equation of motion (1) is trans-
formed to

dA
dt

¼mð1Þ
1 ðA;ΘÞþmð2Þ

1 ðA;ΘÞþ ∑
n

k ¼ 1
σ1kðA;ΘÞξkðtÞ ð4aÞ

dΘ
dt

¼mð1Þ
2 ðA;ΘÞþmð2Þ

2 ðA;ΘÞþ ∑
n

k ¼ 1
σ2kðA;ΘÞξkðtÞ ð4bÞ

where

mð1Þ
1 ðA;ΘÞ ¼ �½2αω0þ f ðA cos Φ; �Aω0 sin ΦÞ�A sin 2Φ ð5aÞ

mð1Þ
2 ðA;ΘÞ ¼ �½2αω0þ f ðA cos Φ; �Aω0 sin ΦÞ� sin Φ cos Φ

ð5bÞ

mð2Þ
1 ðA;ΘÞ ¼ � u

ω0
sin Φ ð5cÞ

mð2Þ
2 ðA;ΘÞ ¼ � u

Aω0
cos Φ ð5dÞ

σ1kðA;ΘÞ ¼ �gkðA cos Φ; �Aω0 sin ΦÞ
ω0

sin Φ ð5eÞ

σ2kðA;ΘÞ ¼ �gkðA cos Φ; �Aω0 sin ΦÞ
Aω0

cos Φ ð5fÞ

The right-hand sides of Eqs. (4a) and (4b) are indeed small
under above assumptions, and both A(t) and Θ(t) are slowing
varying. According to [26], the vector process ½A;Θ� will converge
to a diffusive Markov process when ε-0. Carrying out the
stochastic averaging method, the amplitude process A(t) itself is
a Markov process, governed by the following Itô stochastic
equation:

dA¼ ½mð1ÞðAÞþmð2ÞðAÞ�dtþσðAÞdBðtÞ ð6Þ
where B(t) is a unit Wiener process, and mð1ÞðAÞ, mð2ÞðAÞ and σðAÞ
are derived as,

mð1ÞðAÞ ¼ 〈mð1Þ
1 〉tþ

Z 0

�1
∑
n

r;k ¼ 1

∂σ1kðtÞ
∂A

σ1rðtþτÞþ∂σ1kðtÞ
∂Θ

σ2rðtþτÞ
� �

t
RkrðτÞdτ

ð7aÞ

mð2ÞðAÞ ¼ 〈mð2Þ
1 〉t ð7bÞ

σ2ðAÞ ¼
Z �1

�1
∑
n

r;k ¼ 1
〈σ1kðtÞσ1rðtþτÞ〉tRkrðτÞdτ ð7cÞ

where �h it denotes the time averaging in one period, defined as,

〈�〉t ¼ 1
2π

Z 2π

0
�dΦ ð8Þ

The amplitude process A(t) will be investigated hereafter.
It is noted that the control force u is included in the term mð2ÞðAÞ,
and it will become a function of the amplitude A after the time
averaging.

2.2. Optimal bounded control

Since the response amplitude A(t) is an implication of the
response magnitude level, reduction of A(t) results in a lower
system response, which is the purpose of the feedback control. In
order to deal with the nonstationary responses of the system, a
time interval should be set in prior. Since we are interested in any
time instant T, the time interval should be ½t0; T �. Let us
assumet0rt1r…rtirtiþ1r…rT , and consider the optimal
control problem in any subinterval ½ti; tiþ1� with the following
form of performance index:

J ¼ E
Z tiþ 1

ti
Fða;u; tÞdtþG½aðTÞ�

� �
ð9Þ

where a is the state variable of the random amplitude A(t). F and G
are two continuous differential convex functions. Based on the
dynamical programming principle [27], together with Eq. (6), a
simplified dynamical programming equation can be derived in
terms of the optimal performance index η as follows,

η¼ JðunÞ ¼min
u

Fða;u; tÞþmðaÞdV
da

þ1
2
σ2ðaÞd

2V
da2

" #
ð10Þ

where,mðaÞ ¼ ½mð1ÞðAÞþmð2ÞðAÞ�A ¼ a, un is the optimal control force,
and V ¼ V ðaÞ is the value function. Assume that u0ðu040Þ is the
allowed maximum control force so that uðAÞjru0. By minimizing
the right hand side of Eq. (10) with respect to u, noticing only one
term mð2ÞðaÞ associated with u, and imposing the constraint
uðAÞjru0, the optimal control force unin ½ti; tiþ1� can then be
deduced as,

un ¼ �u0sgn
_x
ω2

0

dV
da

 !
ð11Þ

where ‘sgn’ denotes the sign function. Since the value function
VðaÞ should increase with increasing amplitude, dV=da40 [23,24],
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