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a b s t r a c t

Although a number of methods have been developed to generate random fields, it remains a challenge to
efficiently generate a large, multi-dimensional, multi-variate property field. For such problems, the
widely used spectral representation method tends to require relatively longer computing time. In this
paper, a modified linear estimation method is proposed, which involves mapping the linearly estimated
field through a series of randomized translations and rotations from one realization to the next. These
randomized translations and rotations enable the simulated property field to be stationary. The
autocorrelation function of the simulated fields can be approximately described by a squared
exponential function. The algorithms of the proposed method in both the rectangular and cylindrical
polar coordinate systems are demonstrated and the results validated by Monte-Carlo simulations.
Comparisons between the proposed method and spectral representation method show that the results
from both methods are in good agreement, as long as the cut-off wave numbers of the spectral
representation method are sufficiently large. However, the proposed method requires much less
computational time than the spectral representation method. This makes it potentially useful for
generating large multi-dimensional fields in random finite element analysis. Applications of the
proposed method are exemplified in both rectangular and cylindrical polar coordinate systems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many materials possess significant spatial variability in properties
[8,9,35,36]. An example in geotechnical engineering is cement-
admixed soils, the strength of which can range from about 700 kPa
to 5 MPa ([5]). These materials can be simulated by second-order
stationary random fields [50] with a marginal distribution and an
autocorrelation function (or correlation structure for multi-variate
fields). Monte-Carlo simulations are usually required in random
finite element analysis of such spatially variable media [37,13].
Thus, in conducting random finite element analysis of large three-
dimensional problems, efficiency in generating random fields is a
matter of practical importance.

A commonmethod for generating second-order stationary random
fields is the spectral representation method (SRM) [41–46,14,15]. The
autocorrelation function of the generated field can be varied via the
corresponding power spectral density function. Non-Gaussian random
field can be derived from Gaussian random field by iteratively
applying a memoryless translation [16,4]. Another commonly used
approach is the Karhunen–Loeve (KL) expansion [12,34,33,47], which

can generate both Gaussian and non-Gaussian random fields directly.
As the scale of fluctuation (SOF) of a random field decreases, the KL
expansion reduces to the SRM [49,19]. However, both methods involve
summation of an infinite number of terms. This can lead to time-
consuming computation for large three-dimensional random fields.
Hence, they are seldom applied to such problems.

Matheron [31] proposed a turning bands method that requires
the user to pre-define a set of basis lines using an existing method,
such as the SRM. If the number of basis lines is not large enough,
streaking may occur. Fenton and Vanmarcke [11] developed an
efficient local average subdivision method, but this can generate
systematic bias in variance. Liu et al. [26] proposed linear estima-
tion method (LEM) which was subsequently improved by Li and
Der Kiureghian [25]. This method involves a linear combination of
several correlated random variables, and is thus relatively efficient
to implement. However, it requires an initial grid of correlated
random values. Lawrence [23,24] proposed a basis variable app-
roach, by expanding a random function into a Fourier-type series,
which is similar in concept to the KL expansion.

Most of those methods can generate a Gaussian random field
with various autocorrelation functions. However, the autocorrela-
tion function of a random property is often not readily determined
from limited data [2]. Furthermore, Fenton and Griffith [10] showed
that different types of autocorrelation function have insignificant
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effect on the overall performance of a material if the SOF is fixed.
Hence, the focus is often on the SOF rather than autocorrelation
function itself [22,1,48,30].

This paper proposes an efficient method for generating large
three-dimensional random fields with controllable SOF. The pro-
posed method, hereafter termed modified linear estimation (MLE)
method, is able to generate a spatially continuous, stationary, ergodic
and Gaussian random field, while preserving the efficiency of LEM.
The basis of the method was the first presented, followed by
adaptation from rectangular coordinate system to cylindrical polar
coordinate system, which is needed to generate columnar-structured
random fields of cement-admixed soil columns. The proposed
method was then verified by using Monte-Carlo simulations and
compared with the SRM. Finally, the efficiency of the proposed
method in generating large three-dimensional random fields is
demonstrated by two practical examples.

2. Linear estimation method

In the original LEM ([26]), a random variable f is calculated via
the relation

f ðxÞ ¼ ∑
n

i ¼ 1
NiðxÞU f i;k ð1Þ

where x is the position vector of a point within an n-noded finite
element k, fi,k is the value of the random variable at the ith nodal
point of element k, and Ni(x) are the shape functions for element
k [53]. The shape functions satisfy the condition

∑
n

i ¼ 1
NiðxÞ ¼ 1 ð2Þ

The mean and variance of f(x) in Eq. (1) can be written as

E½f ðxÞ� ¼ ∑
n

i ¼ 1
NiðxÞUE½f i;k� ð3Þ

D½f ðxÞ� ¼ σ2 ∑
n

i ¼ 1
N2

i ðxÞþ ∑
n

j4 i
∑
n�1

i ¼ 1
2ρijNiðxÞNjðxÞ

 !
ð4Þ

where E½ � and D[ ] represent the expectation and variance
operators, respectively; σ is the standard deviation of the variate
at every node (fi,k are assumed to have constant standard devia-
tion); ρij¼ρji is the correlation coefficient between the variables at
the ith and jth nodal points.

Equation (3) shows that in the LEM, a constant mean is implied
by virtue of Eq. (2); however, Eq. (4) implies the variance of the
simulated random field f(x) differs from σ2 and also is not constant
unless ρij¼1, which is not always the case. As a result, f(x) is not
always stationary. Li and Der Kiureghian [25] recommended using
optimized coefficients instead of shape functions in Eq. (1) so that
the error in variance can be minimized. In the original LEM as well
as the modification of Li and Der Kiureghian [25], the correlated
nodal values need to be generated, such as by SRM.

3. Modified linear estimation method

The basic principle of the proposed MLE method is to generate a
stationary Gaussian random field with zero-mean, unit-variance
and SOF¼ ffiffiffi

π
p

. This type of random field will be hereafter termed
property field with position vector y. Random fields with any
prescribed SOF can be readily modeled by stretching from this
basic property field.

3.1. Monte-Carlo algorithm for n-dimensional m-variate Gaussian
random field

To generate an n-dimensional m-variate (nDmV) property field
with a cross-correlation matrix C in the MLE method involves the
following four steps.

Step 1. Discretize the n-dimensional hyperspace with position
vector s into an n-dimensional grid with unit grid spacing and
populate each grid node with an m-component Nð0;1Þ vector
r, where Nð0;1Þ denotes a random number generated from the
Gaussian distribution with zero-mean and unit-variance; that is, the
components in r are independent and identically distributed (i.i.d).

Step 2. Perform the Cholesky decomposition [7] on the cross-
correlation matrix C, giving

C¼ LULT ð5Þ
and replace the random vector r in each node by f, such that

f ¼ LUr ð6Þ
where L is the lower triangular matrix. Physically this transforms
r from being an uncorrelated random vector to a correlated
random vector such that its correlation matrix is C. This hyper-
space together with its nodal vectors will be hereafter referred to
as a precursor random field with position vector s.

Step 3. Locate the position of property field (y) in the precursor
random field (s) via the relation

s¼ JUyþε ð7Þ
where J¼1 for one-dimensional field, and

J¼
cos ψ � sin ψ

sin ψ cos ψ

" #
ð8Þ

and

J¼
cos ðψ3Þ � sin ðψ3Þ 0
sin ðψ3Þ cos ðψ3Þ 0

0 0 1

2
64

3
75

cos ðψ2Þ 0 sin ðψ2Þ
0 1 0

� sin ðψ2Þ 0 cos ðψ2Þ

2
64

3
75

�
1 0 0
0 cos ðψ1Þ sin ðψ1Þ
0 � sin ðψ1Þ cos ðψ1Þ

2
64

3
75 ð9Þ

for two- and three-dimensional fields, respectively. The compo-
nents in J (namely, ψ , ψ1, ψ2 and ψ3) represent the angles of
rotation; ε is a translation vector with n components. In effect, for
fixed values of J and ε, the property field overlies the precursor
random field with a certain rotation angle and translation in
position as shown in Fig. 1. The components in J and ε can be
determined in such a way that they are fixed in each realization,
but change from one realization to the next. In other words, they
are independent random variables, but they have specific values in
each realization. In this study, components in J and ε follow the
uniform distribution in the ranges [0, π/2] and [0, 1], respectively.

Step 4. Once the relative position between these two fields is
fixed with Step 3, a continuous property field with an arbitrary
coordinate y (Fig. 1) can be obtained via the relation

f jðyÞ ¼ ∑
2n

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffi
NiðyÞ

p
Uf ji;k; j¼ 1;2; :::;m: ð10Þ

where f jðyÞ and f ji;k are the jth components of the random vectors at
point y and at node i of element k, respectively; NiðyÞ are the shape
functions of a 2n-noded element taken from the pool of well-
established shape functions in finite element method (e.g. [53]). By
applying Eq. (10), each realization of the property field is a continuous
function of spatial coordinates, which is physically reasonable. The
square root of the shape functions is introduced to ensure that f jðyÞ
has a unit variance.
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