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a b s t r a c t

In this paper the solution of the Fokker Planck (FPK) equation in terms of (complex) fractional moments
is presented. It is shown that by using concepts coming from fractional calculus, complex Mellin
transform and related ones, the solution of the FPK equation in terms of a finite number of complex
moments may be easily found. It is shown that the probability density function (PDF) solution of the FPK
equation is restored in the whole domain, including the trend at infinity with the exception of the value
of the PDF in zero.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic differential calculus was born in the second part of
the last century. The papers of Itô, Wong and Zakaj, Kolmogorov
and many others opened the way to the one of main branches of
interest in stochastic mechanics (see [1–4]). In the particular case
of nonlinear systems einforced by external or parametric normal
white noise the equation ruling the evolution of the conditional
PDF is the FPK equation.

Solution of such equation or its generalizations to the case of
Poisson white noise (Kolmogorov–Feller equation) or to α-stable
white noise (usually termed as Einstein–Smoluchowsky equation)
in terms of moments may not be pursued since in the case of
normal white noise the resulting equations are hierarchical in the
sense that the equation of moments of fixed order contains
moments of higher order and then some truncation procedure
has to be enforced. Other strategies such as cumulant neglect
closure or Hermite polynomials may solve only particular cases
and in any case the probability density function may exhibit
negative values. At least usually, with the classical methods of
solution, the trend for large value of the domain of PDF, is not
guaranteed [5–9]. The latter aspect destroy the possibility to
perform reliability analysis that is the central point of the
structural analysis. Even though other methods are available in
literature for the solution of the Fokker Planck equation like finite
element method [10], stochastic averaging method [11–13], path
integral solution [13–16], Wiener path integral technique [17], the
FPK equation is difficult to solve in easy and direct way.

It is well known, that by knowing the moments of a random
variable, the PDF may not be reconstructed. Some improvements
for the PDF characterization may be obtained by using fractional
moments of real order [18,19].

Recently it has been shown that by using concepts coming from
fractional calculus in complex domain and Mellin transform a new
form of expansion of the probability density function is obtained
involving moments of the type γ ρ η= +γ−E X i[ ],1 termed as
Complex Fractional Moments (CFM) [20–22]. These moments are
complex quantities and are related to fractional Riesz integrals in
zero and to the Mellin transform of the PDF. It has been also shown
that with the CFM, evaluated for different value of the imaginary
part (while γ ρ=Re( ) remains fixed), both PDF and characteristic
function may be reconstructed in the whole respective domains by
using the inverse Mellin transform [23]. Using similar concepts
Correlation and Power Spectral Density function may be also
represented as a summation of finite number of (complex) power
law terms [24]. Then working in complex plane new informations
in probability and their Fourier transform comes out also for heavy
tails distribution (Lévy random variables).

Up to now these concepts seem to be related only to the
description of the PDF, in this paper it will be shown that by
working with CFM the solution of the FPK equation may be
obtained by solving a finite set of ordinary differential equations
involving only a limited number of moments of the type γ −E X[ ]1k ,
with γ ρ η= + ik k. This goal is obtained by making the Mellin
transform of the FPK equation. Such a way has not been used in
the past since the Mellin transform of the various terms of the FPK
equation are evaluated for different values of the real part of the
Mellin transform. This problem also happens for fractional or

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/probengmech

Probabilistic Engineering Mechanics

http://dx.doi.org/10.1016/j.probengmech.2014.09.003
0266-8920/& 2014 Elsevier Ltd. All rights reserved.

E-mail address: mario.dipaola@unipa.it

Probabilistic Engineering Mechanics 38 (2014) 70–76

www.sciencedirect.com/science/journal/02668920
www.elsevier.com/locate/probengmech
http://dx.doi.org/10.1016/j.probengmech.2014.09.003
http://dx.doi.org/10.1016/j.probengmech.2014.09.003
http://dx.doi.org/10.1016/j.probengmech.2014.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.probengmech.2014.09.003&domain=pdf
mailto:mario.dipaola@unipa.it
http://dx.doi.org/10.1016/j.probengmech.2014.09.003


ordinary differential equations in the Mellin domain. It follows
that only very particular cases of differential equations (see [25])
may be solved. Here this problem is overcome showing that CFM
evaluated for a fixed value of ρ may reconstruct CFM for any other
value of ρ as simple linear combinations.

2. Mellin transform and related concepts

Let f x( ) be any real function defined in ≤ < ∞x0 . The Mellin
transform, labeled as γ −M ( 1)f , is defined as

∫γ γ γ ρ η= − = = +γ
∞

−f x M f x x dx i{ ( ); } ( 1) ( ) ; (1)f
0

1

where = −i 1 and ρ η ∈ , .
If the Mellin transform exists, then f x( ) may be obtained in the

form

∫γ
π

γ η= − = − >
η

γ−

=−∞

∞
−{ }f x M x M x d x( ) ( 1);

1
2

( 1) ; 0
(2)f f
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It is to be emphasized that the integration is performed along
the imaginary axis while ρ remains fixed. The condition for the
existence of the Mellin transform is that ρ– < < −p q, where p and
q are the order of zero at x¼0 and x¼1, respectively. Namely

= =
→ →∞

f x O x f x O xlim ( ) ( ); lim ( ) ( ) (3)x

p

x

q

0

where ⋅O( ) means order of the term in parenthesis.
Such an example if = + −f x x( ) (1 ) 1, since =

→
f x O xlim ( ) 1[ ( )]

x 0

0 then

=p 0, and =
→∞

− −f x x O xlim ( ) [ ( )]
x

1 1 , then = −q 1; it follows that in this

case the existence condition is ρ< <0 1. The strip of ρ such that
ρ− < < −p q is the so called Fundamental Strip (FS) of the Mellin

transform. If −q is lesser than −p the Mellin transform and its
inverse do not exist.

Eq. (2) may be discretized in the form

∑η
π

γ γ ρ η≅ Δ − = + Δγ

=−

−f x M x ik( )
2

( 1) ;
(4)k m

m

f k k
k

where ηΔ is the discretization step along to the imaginary axis,
η ηΔ =m is a cut-off value chosen in such a way that the contribu-

tion of terms of higher order than m do not produce sensible
variations on f x( ). It is to be remarked that γ −M ( 1)f is analytic
onto the fundamental strip, and is such that

ρ η ρ η+ − = − −⁎M i M i( 1) ( 1) (5)f f

where the star means complex conjugate. It follows that with
simple manipulations the summation in Eq. (4) may be rewritten
in a summation from 0 to m.

The Riesz fractional integral of a certain function f x( ) that is
zero for <x 0, denoted as γI f x( )( ), is defined as

∫ν γ
ξ ξ ξ ρ ρ= − > ≠γ γ

∞
−I f x f x d( )( )

1
2 ( )

( ) ; 0, 1, 3, .. .
(6)c 0

1

where ν γ Γ γ γ π=( ) ( ) cos( ( /2))c and Γ ⋅( ) is the Euler Gamma function.
By comparing Eqs. (1) and (6) it may be stated that the Mellin
transform is related to Riesz fractional integral in zero, that is

ν γ γ= −γI f M2 ( )( )(0) ( 1) (7)c f

Under this perspective the representation in Eq. (4) looks like a
Taylor expansion because it involves an operator in zero and a
(complex) power series on x; for more details see [23]. The main
difference is that when a truncation on the classical Taylor series is
performed, always the Taylor series diverges as x diverges, while no
divergence problem occur using Eq. (4) since summation is performed

along to the imaginary axis and ρ remain fixed. Moreover, unless f x( )
belongs to the class ∞C in zero, the various derivatives in zero may be
divergent quantities and the Taylor expansion in such cases is mean-
ingless. On the contrary the series expressed in Eq. (4) never diverges
provided ρ belongs to the FS of the Mellin transform and then f x( ) is
reproduced in the whole domain with the exception of the value in
zero. With these simple information we can now solve the FPK
equation by using Mellin transform theorem.

3. Probability and complex fractional moments and its use for
the solution of the Fokker Planck equation

In the ensuing derivations, for simplicity sake's, we suppose
that the PDF of a stochastic process X t( ), in the following denoted
as p x t( , )X , is symmetric, namely = −p x t p x t( , ) ( , )X X .

The Mellin transform of p x t( , )X , denoted as γ −M ( 1)pX
, is given

in the form

∫γ − = =γ γ
∞
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1
2

[ ( ) ] (8)p X0

1 1
X

where ⋅E[ ] means ensemble average. From this equation it may be
stated that the Mellin transform of the PDF is strictly related to
moments of the type γ−E X t[ ( ) ]1 .

According to Eq. (4) the discretized version of the inverse
Mellin Transform is written for >x 0 in the equivalent forms
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where π η= Δb / and ρ belongs to the FS of p x t( , )X . Since ≥p x t( , ) 0X
and the area of the PDF in –∞0 is 1/2 then =

→∞
p x tlim ( , ) 0

x X . It

follows that the fundamental strip of p x t( , )X always exists and, for
≠p t(0, ) 0X , is ρ< < u0 . The value of u depends of the order of

zero of the PDF at = ∞x . As an example for α-stable random
variable the moments β ∈ ℜβE X[ ]( ) do not diverge only in the
range β α− < <1 [23]. Then for such random variable the FS is

ρ α< < +0 1. In general if for a given stochastic process the
integer moments diverge starting from a certain value, say r , then
the strictest FS is ρ< < +r0 1.

Let us now suppose that the equation of motion of a (mass-less)
non-linear half oscillator is given in the form

= +
=⎪

⎪⎧⎨
⎩

X f X t W t

X X

.
( , ) ( )

(0) (10a,b)0

where W t( ) is a normal zero mean white noise, formal derivative
of the Brownian motion B t( ), ( =dB t dt W t( )/ ( )) characterized by

=E dB t D dt[ ( )]2 , being D the intensity of the white noise. In Eq. (10)
we suppose that = − −f X t f X t( , ) ( , ) is a deterministic non-linear
function of the stochastic output process X t( ). X0 is a random
variable with assigned distribution ( = −p x p x( , 0) ( , 0)X X ). Under
these assumptions the output stochastic process has a symmetric
distribution p x t( , )X .

The Fokker–Planck equation, ruling the transition probability of
X t( ), is written in the form

∂
∂
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where the overbar means assigned PDF in =t 0.
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